994 resultados para ENZYME-CATALYZED REACTIONS
Resumo:
This work study proposes novel and natural inhibitors of the enzyme urease, as more sustainable alternatives to the synthetic ones. Specifically, Deep Eutectic Solvents (DES) were used as an extractants and carriers of polyphenols extracted from waste biomass enriched in antioxidant compounds. The polyphenolic extracts with DES have been tested on lab-scale experiments to verify their effect on the reduction of the hydrolysis rate of urea-based fertilizers catalyzed by urease. The phytotoxicity and the soil ecotoxicity of DES and polyphenols formulations were then tested. DES resulted promising in terms of polyphenols extraction ability from biomass and as carriers of bioactive compounds in the agricultural field, showing non-damaging effects on plants (Avena sativa) and microarthropods in soil.
Resumo:
Transition metal catalyzed cross-coupling reactions represent among the most versatile and useful tools in organic synthesis for the carbon-carbon (C-C) bond formation and have a prominent role in both the academic and pharmaceutical segments. Among them, palladium catalyzed cross-coupling reactions are currently the most versatile. In this thesis, the applications, impact and development of green palladium cross-coupling reactions are discussed. Specifically, we discuss the translation of the Twelve Principles of Green Chemistry and their applications in pharmaceutical organometallic chemistry to stimulate the development of cost-effective and sustainable catalytic processes for the synthesis of active pharmaceutical ingredients (API). The Heck-Cassar-Sonogashira (HCS) and the Suzuki-Miyaura (SM) protocols, using HEP/H2O as green mixture and sulfonated phosphine ligands, allowed to recycle and recover the catalyst, always guaranteeing high yields and fast conversion under mild conditions, with aryl iodides, bromides, triflates and chlorides. No catalyst leakage or metal contamination of the final product were observed during the HCS and SM reactions, respecting the very low limits for metal impurities in medicines established by the International Conference of Harmonization Guidelines Q3D (ICH Q3D). In addition, a deep understanding of the reaction mechanism is very important if the final target is to develop efficient protocols that can be applied at industrial level. Experimental and theoretical studies pointed out the presence of two catalytic cycles depending on the counterion, shedding light on the role of base in catalyst reduction and acetylene coordination in the HCS coupling. Finally, the development of a cross-coupling reaction to form aryldifluoronitriles in the presence of copper is discussed, highlighting the importance of inserting fluorine atoms within biological structures and the use of readily available metals such as copper as an alternative to palladium.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management.
Resumo:
Facial cosmetic procedures are increasingly requested, and dermal filler materials have been widely used as a nonsurgical option since the 1980s. However, injectable fillers have been implicated in local adverse reactions. Therefore, the aim of this article was to describe the use of fine needle aspiration cytology (FNAC) in the diagnosis of foreign-body reactions to the perioral injection of dermal fillers. A 69-year-old woman presented with a painful nodule on her right nasolabial fold. Intraoral FNAC was performed, and cytologic smears were examined under optical and polarized light microscopy, showing birefringent microspheres, confirming the diagnosis of an adverse reaction caused by polymethyl methacrylate filler. FNAC is a less invasive method to confirm the diagnosis of adverse reactions caused by perioral cosmetic dermal fillers.
Resumo:
Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.
Resumo:
The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometry. We used the purified GtCel12A to determine its substrate specificity and basic biochemical properties. The G. trabeum Cel12A showed highest activity on β-glucan, followed by lichenan, carboxymethylcellulose, phosphoric acid swollen cellulose, microcrystalline cellulose, and filter paper. The optimal pH and temperature for enzymatic activity were, respectively, 4.5 and 50 °C on β-glucan. Under these conditions specific activity was 239.2 ± 9.1 U mg(-1) and the half-life of the enzyme was 84.6 ± 3.5 hours. Thermofluor studies revealed that the enzyme was most thermal stable at pH 3. Using β-glucan as a substrate, the Km was 3.2 ± 0.5 mg mL(-1) and the Vmax was 0.41 ± 0.02 µmol min(-1). Analysis of the effects of GtCel12A on oat spelt and filter paper by scanning electron microscopy revealed the morphological changes taking place during the process.
Resumo:
Yeast flocculation (Saccharomyces cerevisiae) is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde (0.1-10% w·v(-1)), polyethyleneimine (0.5% v·v(-1)), and tripolyphosphate (1-10% w·v(-1)) inactivated the enzyme in this range, respectively. Glutaraldehyde inhibited all treatments of papain immobilization. The chitosan cross-linked with TPP in 5 h of reaction showed the yield of active immobilized enzyme of 15.7% and 6.07% in chitosan treated with 0.1% PEI. Although these immobilizations have been possible, these levels have not been enough to cause deflocculation of yeast cells. Free enzyme was efficient for yeast deflocculation in dosages of 3 to 4 g·L(-1). Recycling of soluble papain by centrifugation was effective for 14 cycles with yeast suspension in time perfectly compatible to industrial conditions. The reuse of proteases applied after yeast suspension by additional yeast centrifugation could be an alternative to cost reduction of these enzymes.
Resumo:
Use of cisplatin can induce type I hypersensitivity reactions that may also be linked to the quality of the drug utilized. We observed cases of hypersensitivity that appeared to be associated with the brand of cisplatin used. The aim of this study was to compare two different brands of cisplatin in relation to type I hypersensitivity reactions. Brand A was used in a tertiary care teaching hospital until 2012, and use of brand B started from January 2013, when the first hypersensitivity cases were observed. Patients were categorized based on symptom. Cisplatin of both brands was analysed by high-performance liquid chromatography (HPLC) and high-resolution electrospray ionization mass spectrometry (ESI-(+)-MS) and characterized according to US Pharmacopeia. There were no cases of hypersensitivity associated with the use of cisplatin brand A, whereas four of 127 outpatients that used cisplatin brand B were affected. The two brands were in accordance with the US Pharmacopeia parameters, and there was no significant difference in the total platinum levels between the two brands when analysed by HPLC. However, high-resolution ESI-(+)-MS analyses show that brand B contains approximately 2.7 times more hydrolysed cisplatin than brand A. The increase in the hydrolysed form of cisplatin found in brand B may be the cause of the hypersensitivity reaction observed in a subset of patients. We present the first study of the quality of drugs by high-resolution ESI-(+)-MS. Drug regulatory agencies and manufacturers should consider including measurement of hydrolysed cisplatin as a quality criterion for cisplatin formulations.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
PURPOSE: This study evaluated the quality of DNA obtained from stored human saliva and its applicability to human identification. METHODS: The saliva samples of 20 subjects, collected in the form of saliva in natura and from mouth swabs and stored at -20ºC, were analyzed. After 7 days, the DNA was extracted from the 40 saliva samples and subjected to PCR and electrophoresis. After 180 days, the technique was repeated with the 20 swab samples. RESULTS: The first-stage results indicated that DNA was successfully extracted in 97.5% of reactions, 95% of saliva in natura and 100% of swab saliva samples, with no statistically significant difference between the forms of saliva. In the second phase, the result was positive for all 20 analyzed samples (100%). Subsequently, in order to analyze the quality of the DNA obtained from human saliva, the SIX3-2 gene was tested on the 20 mouth swab samples, and the PCR products were digested using the MbO1 restriction enzyme to evaluate polymorphisms in the ADRA-2 gene, with positive results for most samples. CONCLUSION: It was concluded that the quantity and quality of DNA from saliva and the techniques employed are adequate for forensic analysis of DNA.
Resumo:
The South American fur seal (Arctocephalus australis) is an amphibious marine mammal distributed along the Atlantic and Pacific coasts of South America. The species is well adjusted to different habitats due to the morphology of its fin-like members and due to some adaptations in their integumentary system. Immunohistochemical studies are very important to evaluate the mechanisms of skin adaptation due the differential expression of the antigens present in the tissue depending of the region of the body surface. However, its strongly pigmented (melanin) epidermis prevents the visualization of the immuno-histochemical chromogens markers. In this study a melanin bleaching method was developed aimed to allow the visualization of the chromogens without interfering in the antigen-antibody affinity for immunohistochemistry. The analysis of PCNA (proliferating cell nuclear antigen) index in the epidermis of A. australis by immunohistochemistry with diaminobenzidine (DAB) as chromogen was used to test the method. The bleaching of the melanin allowed to obtain the cell proliferation index in epidermis and to avoid false positive results without affecting the immunohistochemical results.
Resumo:
Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the development of novel drugs against schistosomiasis, a neglected tropical disease that affects about 200 million people worldwide. In the present work, enzyme kinetic studies were carried out in order to determine the potency and mechanism of inhibition of a series of SmPNP inhibitors. In addition to the biochemical investigations, crystallographic and molecular modeling studies revealed important molecular features for binding affinity towards the target enzyme, leading to the development of structure-activity relationships (SAR).
Screening of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase enzyme inhibitors
Resumo:
The inhibitory activity of crude extracts of Meliaceae and Rutaceae plants on glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) enzyme from Trypanosoma cruzi was evaluated at 100 μg/mL. Forty-six extracts were tested and fifteen of them showed significant inhibitory activity (IA % > 50). The majority of the assayed extracts of Meliaceae plants (Cedrela fissilis, Cipadessa fruticosa and Trichilia ramalhoi) showed high ability to inhibit the enzymatic activity. The fractionation of the hexane extract from branches of C. fruticosa led to the isolation of three flavonoids: flavone, 7-methoxyflavone and 3',4',5',5,7-pentamethoxyflavone. The two last compounds showed high ability to inhibit the gGAPDH activity. Therefore, the assayed Meliaceae species could be considered as a promising source of lead compounds against Chagas' disease.