928 resultados para ENDOGENOUS KINASE
Resumo:
An in vitro translation system has been prepared from Plasmodium falciparum by saponin lysis of infected-erythrocytes to free parasites which were homogeneized with glass beads, centrifuged to obtain a S-30 fraction followed by Sephadex G-25 gel filtration. This treatment produced a system with very low contamination of host proteins (<1%). The system, optimized for Mg2+ and K+, translates endogenous mRNA and is active for 80 min which suggests that their protein factors and mRNA are quite stable.
Resumo:
We have investigated the changes in the responses to noradrenaline of isolated tail arteries of spontaneously hypertensive (SHR) and renovascular hypertensive rats (Wistar-Kyoto: two-kidney, one-clip model, WKY:2K1C) compared with normotensive (Wistar-Kyoto, WKY) rats. Renovascular hypertension was induced by 4 weeks' unilateral renal artery clipping. Arteries were vasoconstricted with exogenous noradrenaline, electrical field stimulation or high potassium. The effects of the latter two stimuli were abolished by reserpine and so were presumably dependent on the presence of endogenous noradrenaline. In the SHR the maximal vasoconstriction produced by all three stimuli was greater than in WKY. Dose-response curves were steeper and there was no change in threshold. Vascular mass was greater. We interpret these results as showing an increase in vascular reactivity in the SHR caused by structural adaptation. The WKY:2K1C responses to noradrenaline could also be explained in terms of structural adaptation but there was no increase in vascular mass. Sensitivity to potassium and electrical stimulation was decreased, suggesting a defect in vascular neurotransmission. This was supported by the observations of a decreased arterial noradrenaline content and of decreased sensitivity to cocaine.
Resumo:
The c-Jun-N-terminal kinase (JNK) pathway has been shown to play an important role in excitotoxic neuronal death and several studies have demonstrated a neuroprotective effect of D-JNKi, a peptide inhibitor of JNK, in various models of cerebral ischemia. We have now investigated the effect of D-JNKi in a model of transient focal cerebral ischemia (90 min) induced by middle cerebral artery occlusion (MCAo) in adult male rats. D-JNKi (0.1 mg/kg), significantly decreased the volume of infarct, 3 days after cerebral ischemia. Sensorimotor and cognitive deficits were then evaluated over a period of 6 or 10 days after ischemia and infarct volumes were measured after behavioral testing. In behavioral studies, D-JNKi improved the general state of the animals as demonstrated by the attenuation of body weight loss and improvement in neurological score, as compared with animals receiving the vehicle. Moreover, D-JNKi decreased sensorimotor deficits in the adhesive removal test and improved cognitive function in the object recognition test. In contrast, D-JNKi did not significantly affect the infarct volume at day 6 and at day 10. This study shows that D-JNKi can improve functional recovery after transient focal cerebral ischemia in the rat and therefore supports the use of this molecule as a potential therapy for stroke.
Resumo:
Aggregating cell cultures prepared from fetal rat telencephalon express the two subunits [cerebellar soluble lectins (CSL) 1 and 2] of a soluble, mannose-specific endogenous lectin (CSL) in a development-dependent manner. Increased CSL synthesis was found at an early postmitotic stage as well as during the period of maximal myelination. Repetitive treatment of early cultures with epidermal growth factor (EGF, 3nM) caused a great stimulation of CSL biosynthesis. Immunocytochemical studies revealed particularly intense CSL-specific staining in small, EGF-responsive cells, presumably glial cells. Large quantities of CSL-immunoreactive material were found also in the extracellular space and on the external side of the plasma membrane, indicating abundant release of CSL. The present findings suggest that EGF or EGF-related factors in the brain are able to regulate the expression of an endogenous lectin, affecting brain ontogeny.
Resumo:
RATIONALE: AICAR (5-aminoimidazole-4-carboxamide 1β-D-ribofuranoside) is prohibited in sport according to rules established by the World Anti-Doping Agency. Doping control laboratories identify samples where AICAR abuse is suspected by measuring its urinary concentration and comparing the observed level with naturally occurring concentrations. As the inter-individual variance of urinary AICAR concentrations is large, this approach requires a complementary method to unambiguously prove the exogenous origin of AICAR. Therefore, a method for the determination of carbon isotope ratios (CIRs) of urinary AICAR has been developed and validated. METHODS: Concentrated urine samples were fractionated by means of liquid chromatography for analyte cleanup. Derivatization of AICAR yielding the trimethylsilylated analog was necessary to enable CIR determinations by gas chromatography/combustion/isotope ratio mass spectrometry. The method was tested for its repeatability and stability over time and a linear mixing model was applied to test for possible isotopic discrimination. A reference population of n = 63 males and females was investigated to calculate appropriate reference limits to differentiate endogenous from exogenous urinary AICAR. These limits were tested by an AICAR elimination study. RESULTS: The developed method fulfills all the requirements for adequate sports drug testing and was found to be fit for purpose. The investigated reference population showed a larger variability in the CIR of AICAR than of the endogenous steroids. Nevertheless, the calculated thresholds for differences between AICAR and endogenous steroids can be applied straightforwardly to evaluate suspicious doping control samples with the same statistical confidence as established e.g. for testosterone misuse. These thresholds enabled the detection of a single oral AICAR administration for more than 40 h. CONCLUSIONS: Determination of thee CIRs is the method of choice to distinguish between an endogenous and an exogenous source of urinary AICAR. The developed method will enable investigations into doping control samples with elevated urinary concentrations of AICAR and clearly differentiate between naturally produced/elevated and illicitly administered AICAR.
Resumo:
In the pathogenesis of type I diabetes mellitus, activated leukocytes infiltrate pancreatic islets and induce beta cell dysfunction and destruction. Interferon (IFN)-gamma, tumor necrosis factor-alpha and interleukin (IL)-1 beta play important, although not completely defined, roles in these mechanisms. Here, using the highly differentiated beta Tc-Tet insulin-secreting cell line, we showed that IFN-gamma dose- and time-dependently suppressed insulin synthesis and glucose-stimulated secretion. As described previously IFN-gamma, in combination with IL-1 beta, also induces inducible NO synthase expression and apoptosis (Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000) J. Biol. Chem. 275, 37672--37678). To assess the role of the Janus kinase/signal transducer and activator of transcription (STAT) pathway in IFN-gamma intracellular signaling, we stably overexpressed SOCS-1 (suppressor of cytokine signaling-1) in the beta cell line. We demonstrated that SOCS-1 suppressed cytokine-induced STAT-1 phosphorylation and increased cellular accumulation. This was accompanied by a suppression of the effect of IFN-gamma on: (i) reduction in insulin promoter-luciferase reporter gene transcription, (ii) decrease in insulin mRNA and peptide content, and (iii) suppression of glucose-stimulated insulin secretion. Furthermore, SOCS-1 also suppressed the cellular effects that require the combined presence of IL-1 beta and IFN-gamma: induction of nitric oxide production and apoptosis. Together our data demonstrate that IFN-gamma is responsible for the cytokine-induced defect in insulin gene expression and secretion and that this effect can be completely blocked by constitutive inhibition of the Janus kinase/STAT pathway.
Resumo:
Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.
Resumo:
Invariant Valpha14 (Valpha14i) NKT cells are a murine CD1d-dependent regulatory T cell subset characterized by a Valpha14-Jalpha18 rearrangement and expression of mostly Vbeta8.2 and Vbeta7. Whereas the TCR Vbeta domain influences the binding avidity of the Valpha14i TCR for CD1d-alpha-galactosylceramide complexes, with Vbeta8.2 conferring higher avidity binding than Vbeta7, a possible impact of the TCR Vbeta domain on Valpha14i NKT cell selection by endogenous ligands has not been studied. In this study, we show that thymic selection of Vbeta7(+), but not Vbeta8.2(+), Valpha14i NKT cells is favored in situations where endogenous ligand concentration or TCRalpha-chain avidity are suboptimal. Furthermore, thymic Vbeta7(+) Valpha14i NKT cells were preferentially selected in vitro in response to CD1d-dependent presentation of endogenous ligands or exogenously added self ligand isoglobotrihexosylceramide. Collectively, our data demonstrate that the TCR Vbeta domain influences the selection of Valpha14i NKT cells by endogenous ligands, presumably because Vbeta7 confers higher avidity binding.
Resumo:
Treatment of cancer using gene therapy is based on adding a property to the cell leading to its elimination. One possibility is the use of suicide genes that code for enzymes that transform a pro-drug into a cytotoxic product. The most extensively used is the herpes simplex virus thymidine kinase (TK) gene, followed by administration of the antiviral drug ganciclovir (GCV). The choice of the promoter to drive the transcription of a transgene is one of the determinants of a given transfer vector usefulness, as different promoters show different efficiencies depending on the target cell type. In the experiments presented here, we report the construction of a recombinant adenovirus carrying TK gene (Ad-TK) driven by three strong promoters (P CMV IE, SV40 and EN1) and its effectiveness in two cell types. Human HeLa and mouse CCR2 tumor cells were transduced with Ad-TK and efficiently killed after addition of GCV. We could detect two sizes of transcripts of TK gene, one derived from the close together P CMV IE/SV40 promoters and the other from the 1.5 Kb downstream EN1 promoter. The relative amounts of these transcripts were different in each cell type thus indicating a higher flexibility of this system.
Resumo:
AIMS/HYPOTHESIS: High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling. METHODS: Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr ( -/- )) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20-26 weeks of intervention, n = 8-10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake. RESULTS: Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr ( -/- ) vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity. CONCLUSIONS/INTERPRETATION: The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial.
Resumo:
Crizotinib is a first-in-class oral anaplastic lymphoma kinase (ALK) inhibitor targeting ALK-rearranged non-small-cell lung cancer. The therapy was approved by the US FDA in August 2011 and received conditional marketing approval by the European Commission in October 2012 for advanced non-small-cell lung cancer. A break-apart FISH-based assay was jointly approved with crizotinib by the FDA. This assay and an immunohistochemistry assay that uses a D5F3 rabbit monoclonal primary antibody were also approved for marketing in Europe in October 2012. While ALK rearrangement has relatively low prevalence, a clinical benefit is exhibited in more than 85% of patients with median progression-free survival of 8-10 months. In this article, the authors summarize the therapy and alternative test strategies for identifying patients who are likely to respond to therapy, including key issues for effective and efficient testing. The key economic considerations regarding the joint companion diagnostic and therapy are also presented. Given the observed clinical benefit and relatively high cost of crizotinib therapy, companion diagnostics should be evaluated relative to response to therapy versus correlation alone whenever possible, and both high inter-rater reliability and external quality assessment programs are warranted.
Resumo:
Glucose homoeostasis necessitates the presence in the liver of the high Km glucose transporter GLUT2. In hepatocytes, we and others have demonstrated that glucose stimulates GLUT2 gene expression in vivo and in vitro. This effect is transcriptionally regulated and requires glucose metabolism within the hepatocytes. In this report, we further characterized the cis-elements of the murine GLUT2 promoter, which confers glucose responsiveness on a reporter gene coding the chloramphenicol acetyl transferase (CAT) gene. 5'-Deletions of the murine GLUT2 promoter linked to the CAT reporter gene were transfected into a GLUT2 expressing hepatoma cell line (mhAT3F) and into primary cultured rat hepatocytes, and subsequently incubated at low and high glucose concentrations. Glucose stimulates gene transcription in a manner similar to that observed for the endogenous GLUT2 mRNA in both cell types; the -1308 to -212 bp region of the promoter contains the glucose-responsive elements. Furthermore, the -1308 to -338 bp region of the promoter contains repressor elements when tested in an heterologous thymidine kinase promoter. The glucose-induced GLUT2 mRNA accumulation was decreased by dibutyryl-cAMP both in mhAT3F cells and in primary hepatocytes. A putative cAMP-responsive element (CRE) is localized at the -1074/-1068 bp region of the promoter. The inhibitory effect of cAMP on GLUT2 gene expression was observed in hepatocytes transfected with constructs containing this CRE (-1308/+49 bp fragment), as well as with constructs not containing the consensus CRE (-312/+49 bp fragment). This suggests that the inhibitory effect of cAMP is not mediated by the putative binding site located in the repressor fragment of the GLUT2 promoter. Taken together, these data demonstrate that the elements conferring glucose and cAMP responsiveness on the GLUT2 gene are located within the -312/+49 region of the promoter.
Resumo:
Protein tyrosine kinases are pivotal in central nervous tissue development and maintenance. Here we focus on the expression of Ehk-1, a novel Elk-related receptor tyrosine kinase. Ehk-1 gene expression is observed in the developing and adult central nervous system and is highly regulated throughout development at both the messenger RNA and protein levels. Three messenger RNA transcripts of 8.5, 5.9 and 5.1 kb are detectable in the rat brain and a variety of splice possibilities have been identified. However, a major protein species of around M(r) 120,000 predominates throughout development. Ehk-1 messenger RNA and protein levels are highest in the first postnatal week. By in situ messenger RNA hybridization the gene is expressed by all neurons of the adult brain, but mostly in the hippocampus, cerebral cortex and large neurons of the deep cerebellar nuclei, as well as the Purkinje and granular cells of the cerebellum. At earlier stages of development, transcripts are most prominent in the periventricular germinal layers of the brain. Immunohistochemistry reveals a pronounced membrane associated protein expression in immature neurons. In the adult animal, peak reactivity was found in the neuropil with sparing of most perikarya. The spatial and temporal pattern of ehk-1 gene expression suggests a role in both the development and maintenance of differentiated neurons of the central nervous system.
Resumo:
Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.
Resumo:
The association between worm infections and bacterial diseases has only recently been emphasized. This study examined the effect of experimental Angiostrongylus costaricensis infection on endogenous intestinal flora of Swiss Webster mice. Eight mice aging six weeks were selected for this experiment. Four were infected with A. costaricensis and the other four were used as controls. Twenty eight days after the worm infection, all mice in both groups were sacrificed and samples of the contents of the ileum and colon were obtained and cultured for aerobic and anaerobic bacteria. In the mice infected with A. costaricensis there was a significant increase in the number of bacteria of the endogenous intestinal flora, accompanied by a decrease in the number of Peptostreptococcus spp. This alteration in the intestinal flora of mice infected by the nematode may help to understand some bacterial infections described in humans.