342 resultados para EMPLACEMENT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter summarizes the principal results of drilling at Deep Sea Drilling Project (DSDP) Site 595, where the Ngendei Seismic Experiment and the emplacement of DARPA's Marine Seismic System (MSS) were carried out. Background and objectives for this work are presented in the introductory chapter to this volume. Interpretation of the seismic experiment and drilling results are presented in subsequent parts of this volume. The chapter also provides a detailed operational summary of the successful deployment of the MSS during Leg 91.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 720 m of igneous basement that was penetrated at Site 786 of Ocean Drilling Program Leg 125 consists of boninite-series volcanics. Bronzite andesites dominate the lithology and primitive magmas of high-Ca, intermediate-Ca, and low-Ca boninite are present in subordinate amounts. Sparsely phyric boninites typically contain olivine and orthopyroxene phenocrysts with Mg numbers [= Mg/(Mg + Fe) in moles] between 86% and 87%. Their high whole-rock Mg numbers, and the absence of zonation in the phenocrysts, imply equilibration at temperatures probably between 1200° and 1250°C, and 20° to 50°C below their liquidus. Equilibrium olivine and orthopyroxene have identical Mg numbers, and Mg/Fe partitioning between these minerals and the melt thus can be described with a single Kd. The invariably phenocryst-rich bronzite andesites contain Plagioclase that has spectacular zoning and mafic phases that can be as magnesian as those of the boninite parent. The most evolved melts are rhyolites with hypersthene, Plagioclase (An50), and magnetite. Eruption temperatures for the rhyolites are estimated at about 1000°C. Some magmas contain ferroactinolite in the groundmass, which is most likely a secondary, low-temperature phase. The locally large contrasts in degree of alteration are consistent with multiple episodes of magmatic activity. However, all igneous events produced boninite volcanics. Only the first, the edifice-building episode, gave rise to differentiated magmas. Differentiation of parental boninites took place by limited fractional crystallization, producing bronzite andesites. The erupted andesites, dacites and rhyolites are filter pressed extracts from these bronzite andesite magmas, which, as a result, have accumulated crystals. Subsequent younger igneous events produced high-Ca and intermediate-Ca boninites which intruded as dikes and sills throughout the basement sequence. The mineralogy of the dikes and sills reflects variable degrees of subliquidus cooling of the magma before emplacement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 205 of the research vessel JOIDES Resolution was a return expedition to the Leg 170 sites located on the Costa Rica subduction zone. Here the entire sediment cover on the incoming Cocos plate, including significantly large sections of calcareous nannofossil ooze and chalk, is underthrust beneath the overriding Caribbean plate. The large amount of subducted carbonate produces characteristic styles of volcanic and seismic activity that differ from those found farther along strike in Nicaragua and elsewhere. An understanding of the fate of subducted carbonate sediment sections is an essential component to our understanding of the global biogeochemical cycling of carbon dioxide. Because Leg 205 drilling operations were performed within meters of the Leg 170 drill sites occupied during October-December 1996, minimal coring was done during Leg 205. Although the biostratigraphy of the Leg 170 sites has since been documented in detail, questions remained regarding the age and nature of a gabbro sill that was only partially penetrated by coring during Leg 170. Coring operations during Leg 205 fully penetrated the gabbro sill, followed by an additional 12 m of sediments below the sill, and then ~160 m of gabbro. Coring halted at 600 meters below seafloor (mbsf). Calcareous nannofossil age dating of the sediments immediately above the igneous sill, as well as the sediment between the sill and the lower igneous unit, indicates a minimum age of 15.6 Ma and a maximum age of 18.2 Ma for the sediments. This implies that the sill was emplaced more recently than 18.2 Ma. The calcareous nannofossil assemblage in baked sediments in contact with the top of the lower igneous unit also suggests that the maximum age for emplacement is 18.2 Ma. At Site 1254, coring was accomplished between 150 and 230 mbsf (prism section), and from 300 to 367.5 mbsf (prism and through the décollement into the underthrust section). In the interval from 150 to 322 mbsf, the biostratigraphic analysis of calcareous nannofossils suggests that the sediments are early Pleistocene age between 150 and 161 mbsf, late Pliocene age from 161 to 219 mbsf, and early Pliocene age from 219 to 222 mbsf (no younger than 3.75 Ma). The lack of marker fossils in the interval of sediments cored from 300 to 350.6 mbsf does not allow for any age determinations; however, sediments from 351.6 to 359.81 mbsf could be age dated and are also early Pliocene age, but no younger than 3.75 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cation exchange experiments (ammonium acetate and cation resin) on celadonite-smectite vein minerals from three DSDP holes demonstrate selective removal of common Sr relative to Rb and radiogenic Sr. This technique increases the Rb/Sr ratio by factors of 2.3 to 22 without significantly altering the age of the minerals, allowing easier and more precise dating of such vein minerals. The ages determined by this technique (Site 261 - 121.4+/-1.6 m.y.; Site 462A - 105.1+/-2.8 m.y.; Site 516F - 69.9+/-2.4 m.y.) are 34, 54 and 18 m.y. younger, respectively, than the age of crust formation at the site; in the case of site 462A, the young age is clearly related to off-ridge emplacement of a massive sill/flow complex. At the other sites, either the hydrothermal circulation systems persisted longer than for normal crust (10-15 m.y.), or were reactivated by off-ridge igneous activity. Celadonites show U and Pb contents and Pb isotopic compositions little changed from their basalt precursors, while Th contents are significantly lower. Celadonites thus have unusually high alkali/U,Th ratios and low Th/U ratios. If this celadonite alteration signature is significantly imprinted on oceanic crust as a whole, it will lead to very distinctive Pb isotope signatures for any hot spot magmas which contain a component of aged subducted recycled oceanic crust. Initial Sr isotope ratios of ocean crust vein minerals (smectite, celadonite, zeolite, calcite) are intermediate between primary basalt values and contemporary sea water values and indicate formation under seawaterdominated systems with effective water/rock ratios of 20-200.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidized intervals of five organic-rich Madeira Abyssal Plain (MAP) turbidites deposited during the Miocene, Pliocene, and Pleistocene all displayed comparable major loss of total organic carbon (TOC) (84 ± 3.1%) accompanied by a negative isotopic (d13C) shift ranging from -0.3 to -2.9 per mil. Major but significantly lower loss of total nitrogen (Ntot, 61 ± 7.1%) also occurred, leading to a decrease in TOC relative to Ntot (C/Ntot) and a +1.3 to 2.7 per mil Ntot isotopic (d15N) shift. Compound specific isotopic measurements on plant wax n-alkanes indicate the terrestrial organic component in the unoxidized deposits is 13C-enriched owing to significant C4 contribution. Selective preservation of terrestrial relative to marine organic carbon could account for the d13C behavior of TOC upon oxidation but only if a 13C-depleted component of the bulk terrestrial signal is selectively preserved in the process. Although the C/Ntot decrease and positive d15N shift seems inconsistent with selective terrestrial organic preservation, results from analysis of a Modern eolian dust sample collected in the vicinity indicate these observations are compatible. Regardless of the specific explanation for these isotopic observations, however, our findings provide evidence that paleoreconstruction of properties such as pCO2 using the d13C of TOC is a goal fraught with uncertainty whether or not the marine sedimentary record considered is 'contaminated' with significant terrestrial input. Nonetheless, despite major and selective loss of both marine and terrestrial components as a consequence of postdepositional oxidation, intensive organic geochemical proxies such as the alkenone unsaturation index, UK'37, appear resistant to change and thereby retain their paleoceanographic promise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present paleomagnetic data from basaltic pillow and lava flows drilled at four Ocean Drilling Program (ODP) Leg 192 sites through the Early Cretaceous (~120 Ma) Ontong Java Plateau (OJP). Altogether 270 samples (out of 331) yielded well-defined characteristic remanent magnetization components all of which have negative inclinations, i.e. normal polarity. Dividing data into inclination groups we obtain 5, 7, 14 and 15 independent inclination estimates for the four sites. Statistical analysis suggests that paleosecular variation has been sufficiently sampled and site-mean inclinations therefore represent time-averaged fields. Of particular importance is the finding that all four site-mean inclinations are statistically indistinguishable, strongly supporting indirect seismic observation from the flat-lying sediments blanketing the OJP that the studied basalts have suffered little or no tectonic disturbance since their emplacement. Moreover, the corresponding paleomagnetic paleolatitudes agree excellently with paleomagnetic data from a previous ODP site (Site 807) drilled into the northern portion of the OJP. Two important conclusions can be drawn based on the presented dataset: (i) the Leg 192 combined mean inclination (Inc.=-41.4°, N=41, kappa= 66.0, alpha95 =2.6°) is inconsistent with the Early Cretaceous part of the Pacific apparent polar wander path, indicating that previous paleomagnetic poles derived mainly from seamount magnetic anomaly modeling must be used with care; (ii) the Leg 192 paleomagnetic paleolatitude for the central OJP is ~20° north of the paleogeographic location calculated from Pacific hotspot tracks assuming the hotspots have remained fixed. The difference between paleomagnetic and hotspot calculated paleolatitudes cannot be explained by true polar wander estimates derived from other lithospheric plates and our results are therefore consistent with and extend recent paleomagnetic studies of younger hotspot features in the northern Pacific Ocean that suggest Late Cretaceous to Eocene motion of Pacific hotspots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicic Fe-Ti-oxide magmatic series was the first recognized in the Sierra Leone axial segment of the Mid-Atlantic Ridge near 6°N. The series consists of intrusive rocks (harzburgites, lherzolites, bronzitites, norites, gabbronorites, hornblende Fe-Ti-oxide gabbronorites and gabbronorite-diorites, quartz diorites, and trondhjemites) and their subvolcanic (ilmenite-hornblende dolerites) and, possibly, volcanic analogues (ilmenite-bearing basalts). Deficit of most incompatible elements in the rocks of the series suggests that parental melts derived from a source that had already been melted. Correspondingly, these melts could not be MORB derivatives. Origin of the series is thought to be related to melting of the hydrated oceanic lithosphere during emplacement of an asthenospheric plume (protuberance on the surface of large asthenospheric lens beneath MAR). Genesis of different melts was supposedly controlled by ascent of a chamber of hot mantle magmas thought this lithosphere in compliance with the zone melting mechanism. Melt acquired fluid components from heated rocks at peripheries of the plume and became enriched in Fe, Ti, Pb, Cu, Zn, and other components mobile in fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the major, rare earth, and other trace element compositions of clinopyroxenes from two Leg 140, Hole 504B diabase dikes. These pyroxenes reflect a complex history of crystal growth and magma evolution. The large ranges of composition found reflect incorporation of exotic phenocrysts into the melt, the early formation of crystal clots before dike intrusion during an undercooling event, and in-situ fractionation of melt during and following dike emplacement. Some of the pyroxenes occur in coarse two- and three-phase glomerocrysts, which may be ôprotogabbrosö representing early stages of melt crystallization in the lower crust. Large variations in trace element composition are found. These likely reflect heterogeneous nucleation and growth of plagioclase and pyroxene in the melt, as well as complex interface kinetics that may affect partition coefficients during rapid crystal growth expected during undercooling. This can explain the formation of irregular chemical sector zoning in some equant anhedral phenocrysts. Undercooling of magmas in the lower crust most likely reflects input of fresh hot melt into a stagnating melt-storage zone. Dikes intruded upward from an inflated melt-storage zone during such a cycle are likely to be larger than those intruded from the storage zone between such cycles, when it would be deflated, consistent with the greater overall thickness of the phyric dikes in the Leg 140 section of Hole 504B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dismembered ophiolitic rocks including abundant sheared, serpentinized peridotite (mostly harzburgite) and minor basalts, dolerites, gabbros, and altered metabasites (mainly altered amphibolite) were drilled at most of the sites on the upper to lower Middle America Trench landward slope off Guatemala during Leg 84 of the Deep Sea Drilling Project. These rocks show characteristic Cataclastic deformation with zeolite facies metamorphism and alteration after amphibolite and greenschist facies metamorphism. These features indicate that the rocks originated in mid-oceanic ridge, offridge, and possibly other areas including island arc areas and were metamorphosed under a high geothermal gradient at low pressure. They were then structurally deformed and mixed within a serpentinite melange. Such ophiolite melanges may have been emplaced onto the Trench landward slope area during the initiation of subduction of the Cocos Plate. The emplacement seems to be connected to that of the Nicoya Complex in Costa Rica. The slope cover from early Eocene to Recent shows no history of these metamorphic and deformational events, therefore the emplacement of the dismembered ophiolitic rocks occurred at least before the early Eocene. The dismembered ophiolite-based Trench landward slope off Guatemala is a newly documented style of subduction, which has also recently been found at the easternmost edge of the Philippine Sea Plate along the Izu-Mariana-Yap Trench landward slope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submarine slope failures of various types and sizes are common along the tectonic and seismically active Ligurian margin, northwestern Mediterranean Sea, primarily because of seismicity up to ~M6, rapid sediment deposition in the Var fluvial system, and steepness of the continental slope (average 11°). We present geophysical, sedimentological and geotechnical results of two distinct slides in water depth >1,500 m: one located on the flank of the Upper Var Valley called Western Slide (WS), another located at the base of continental slope called Eastern Slide (ES). WS is a superficial slide characterized by a slope angle of ~4.6° and shallow scar (~30 m) whereas ES is a deep-seated slide with a lower slope angle (~3°) and deep scar (~100 m). Both areas mainly comprise clayey silt with intermediate plasticity, low water content (30-75 %) and underconsolidation to strong overconsolidation. Upslope undeformed sediments have low undrained shear strength (0-20 kPa) increasing gradually with depth, whereas an abrupt increase in strength up to 200 kPa occurs at a depth of ~3.6 m in the headwall of WS and ~1.0 m in the headwall of ES. These boundaries are interpreted as earlier failure planes that have been covered by hemipelagite or talus from upslope after landslide emplacement. Infinite slope stability analyses indicate both sites are stable under static conditions; however, slope failure may occur in undrained earthquake condition. Peak earthquake acceleration from 0.09 g on WS and 0.12 g on ES, i.e. M5-5.3 earthquakes on the spot, would be required to induce slope instability. Different failure styles include rapid sedimentation on steep canyon flanks with undercutting causing superficial slides in the west and an earthquake on the adjacent Marcel fault to trigger a deep-seated slide in the east.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I have evaluated shipboard data and preliminary interpretations related to organic geochemistry in light of additional shore-based analyses. Data on interstitial gas, the C/N ratio, and fluorescence indicate that organic matter was altered by sills and that these were all single intrusions except the upper sill complex at Site 481, which was a multiple emplacement. Site 477 had the highest in situ temperature, estimated from interstitial gas composition to be 225°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equatorial Pacific is an important part of the global carbon cycle and has been affected by climate change through the Cenozoic (65 Ma to present). We present a Miocene (12-24 Ma) biogenic sediment record from Deep Sea Drilling Project (DSDP) Site 574 and show that a CaCO3 minimum at 17 Ma was caused by elevated CaCO3 dissolution. When Pacific Plate motion carried Site 574 under the equator at about 16.2 Ma, there is a minor increase in biogenic deposition associated with passing under the equatorial upwelling zone. The burial rates of the primary productivity proxies biogenic silica (bio-SiO2) and biogenic barium (bio-Ba) increase, but biogenic CaCO3 decreases. The carbonate minimum is at ~17 Ma coincident with the beginning of the Miocene climate optimum; the transient lasts from 18 to 15 Ma. Bio-SiO2 and bio-Ba are positively correlated and increase as the equator was approached. Corg is poorly preserved, and is strongly affected by changing carbonate burial. Terrestrial 232Th deposition, a proxy for aeolian dust, increases only after the Site 574 equator crossing. Since surface production of bio-SiO2, bio-Ba, and CaCO3 correlate in the modern equatorial Pacific, the decreased CaCO3 burial rate during the Site 574 equator crossing is driven by elevated CaCO3 dissolution, representing elevated ocean carbon storage and elevated atmospheric CO2. The length of the 17 Ma CaCO3 dissolution transient requires interaction with a 'slow' part of the carbon cycle, perhaps elevated mantle degassing associated with the early stages of Columbia River Basalt emplacement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Newly sampled basaltic andesites and andesites from the tholeiitic Ferrar Supergroup of northern Victoria Land and George V Land, Antarctica, are attributed to the known low-Ti and high-Ti series. Aside from known sparsely distributed high-Ti extrusives, a high-Ti sill was found in the Alamein Range outside the Rennick Graben. Low-Ti lavas, sills and dikes display wide petrographical, mineral and geochemical variations, reflecting extensive in-situ differentiation. High-Ti rocks from Litell Rocks are homogeneous with respect to mineralogy and geochemistry, minor deviations are shown by the sampled sill. Chilled margins of low-Ti sills, dikes and lava flows exhibit nearly constant bulk-rock chemistry (mg# ~60) within the studied area. Compared to chilled margins from Tasmanian sills, the striking uniformity of the pre-emplacement chemistry of Ferrar magmas over large distances supports the magma transport model of Elliot et al. (1999, doi:10.1016/S0012-821X(99)00023-0). In the area investigated, compositional variations within the low-Ti series, caused by in-situ differentiation, increase towards the Wilson-Bowers Terrane boundary, possibly displaying the asymmetrical distribution of outcrops over this area. Absence of Ferrar occurrences east of the Bowers Terrane remains a matter of palaeo-geodynamic discussion. Besides, the secondary mineralogy of extrusives from Litell Rocks and Monument Nunataks exhibits noticeable differences, which indicates an elevated thermal gradient in the vicinity of Litell Rocks compared to Monument Nunataks during the Cretaceous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study of sediments from the Cap Timiris Canyon demonstrates that geochemical data can provide reliable age-depth correlation even of highly turbiditic cores and attempts to improve our understanding of how turbidite emplacement is linked to climatic-related sea-level changes. The canyon incises the continental margin off NW Africa and is an active conduit for turbidity currents. In sediment cores from levee and intrachannel sites turbidites make up 6-42% of sediment columns. Age models were fitted to all studied cores by correlating downcore element data to dated reference cores, once turbidite beds had been removed from the dataset. These age models enabled us to determine turbidite emplacement times. The Cap Timiris Canyon has been active at least over the last 245 kyr, with turbidite deposition seemingly linked to stage boundaries and glacial stages. The highly turbiditic core from the intrachannel site postdates to ~15 kyr and comprises Holocene and late Pleistocene sediments. Turbidite deposition at this site was associated especially with the rapid sea-level rise at the Pleistocene/Holocene transition. During the Holocene, turbidity current activity decreased but did not cease.