1000 resultados para ELECTRON-MOBILITY TRANSISTOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers plasma-enhanced chemical vapor deposited (PECVD) silicon nitride (SiNx) and silicon oxide (SiOx) as gate dielectrics for organic thin-film transistors (OTFTs), with solution-processed poly[5, 5′ -bis(3-dodecyl-2-thienyl)-2, 2′ -bithiophene] (PQT-12) as the active semiconductor layer. We examine transistors with SiNx films of varying composition deposited at 300 °C as well as 150 °C for plastic compatibility. The transistors show over 100% (two times) improvement in field-effect mobility as the silicon content in SiNx increases, with mobility (μFE) up to 0.14 cm2 /V s and on/off current ratio (ION / IOFF) of 108. With PECVD SiOx gate dielectric, preliminary devices exhibit a μFE of 0.4 cm2 /V s and ION / IOFF of 108. PQT-12 OTFTs with PECVD SiNx and SiOx gate dielectrics on flexible plastic substrates are also presented. These results demonstrate the viability of using PECVD SiN x and SiOx as gate dielectrics for OTFT circuit integration, where the low temperature and large area deposition capabilities of PECVD films are highly amenable to integration of OTFT circuits targeted for flexible and lightweight applications. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of this thesis is the measurement and interpretation of thermopower in high-mobility two-dimensional electron systems (2DESs). These 2DESs are realized within state-of-the-art GaAs/AlGaAs heterostructures that are cooled to temperatures as low as T = 20 mK. Much of this work takes place within strong magnetic fields where the single-particle density of states quantizes into discrete Landau levels (LLs), a regime best known for the quantum Hall effect (QHE). In addition, we review a novel hot-electron technique for measuring thermopower of 2DESs that dramatically reduces the influence of phonon drag.

Early chapters concentrate on experimental materials and methods. A brief overview of GaAs/AlGaAs heterostructures and device fabrication is followed by details of our cryogenic setup. Next, we provide a primer on thermopower that focuses on 2DESs at low temperatures. We then review our experimental devices, temperature calibration methods, as well as measurement circuits and protocols.

Latter chapters focus on the physics and thermopower results in the QHE regime. After reviewing the basic phenomena associated with the QHE, we discuss thermopower in this regime. Emphasis is given to the relationship between diffusion thermopower and entropy. Experimental results demonstrate this relationship persists well into the fractional quantum Hall (FQH) regime.

Several experimental results are reviewed. Unprecedented observations of the diffusion thermopower of a high-mobility 2DES at temperatures as high as T = 2 K are achieved using our hot-electron technique. The composite fermion (CF) effective mass is extracted from measurements of thermopower at LL filling factor ν = 3/2. The thermopower versus magnetic field in the FQH regime is shown to be qualitatively consistent with a simple entropic model of CFs. The thermopower at ν = 5/2 is shown to be quantitatively consistent with the presence of non-Abelian anyons. An abrupt collapse of thermopower is observed at the onset of the reentrant integer quantum Hall effect (RIQHE). And the thermopower at temperatures just above the RIQHE transition suggests the existence of an unconventional conducting phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed physical model of amorphous silicon (aSi:H) is incorporated into a twodimensional device simulator to examine the frequency response limits of silicon heterojunction bipolar transistors (HBT's) with aSi:H emitters. The cutoff frequency is severely limited by the transit time in the emitter space charge region, due to the low electron drift mobility in aSi:H, to 98 MHz which compares poorly with the 37 GHz obtained for a silicon homojunction bipolar transistor with the same device structure. The effects of the amorphous heteroemitter material parameters (doping, electron drift mobility, defect density and interface state density) on frequency response are then examined to find the requirements for an amorphous heteroemitter material such that the HBT has better frequency response than the equivalent homojunction bipolar transistor. We find that an electron drift mobility of at least 100 cnr'V"'"1 is required in the amorphous heteroemitter and at a heteroemitter drift mobility of 350 cm2 · V1· s1 and heteroemitter doping of 5×1017 cm3, a maximum cutoff frequency of 52 GHz can be expected. © 1996 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new solid state implementation of a quantum computer (quputer) using ballistic single electrons as flying qubits in 1D nanowires. We use a single electron pump (SEP) to prepare the initial state and a single electron transistor (SET) to measure the final state. Single qubit gates are implemented using quantum dots as phase shifters and electron waveguide couplers as beam splitters. A Coulomb coupler acts as a 2-qubit gate, using a mutual phase modulation effect. Since the electron phase coherence length in GaAs/AlGaAs heterostructures is of the order of 30$\mu$m, several gates (tens) can be implemented before the system decoheres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the fabrication and characterization of a carbon based, bottom gate, thin film transistor (TFT). The active layer is formed from highly sp2 bonded nitrogenated amorphous carbon (a-C:N) which is deposited at room temperature using a filtered cathodic vacuum arc technique. The TFT shows p-channel operation. The device exhibits a threshold voltage of 15 V and a field effect mobility of 10-4 cm2 V-1 s-1 . The valence band tail of a-C:N is observed to be much shallower than that of a-Si:H, but does not appear to severely impede the shift of the Fermi level. This may indicate that a significant proportion of the a-C tail states can still contribute to conduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel device for detection of single photons based on a GaAs/AlGaAs modulation doped field effect transistor (MODFET) which does not rely on avalanche processes is proposed. The optimal channel electron densities and quantum dot parameters for detection of single photons are discussed.