921 resultados para Docker,ARM,Raspberry PI,single board computer,QEMU,Sabayon Linux,Gentoo Linux
Resumo:
低损耗实芯碲酸盐光纤的非线性研究
Resumo:
The microstructures in iron- and sulphur-doped InP crystals were studied using both electron microscopy and electron diffraction. A modulated structure has been found in S-doped InP crystal, where the commensurate modulations corresponded to periodicities of 0.68 nm and 0.7 nm in real space and were related to the reflections of the cubic lattice in [111] and [113BAR] directions; they were indexed as q111* = 1/2(a* + b* + c*) and q113BAR* = 1/4(-a* - b* + 3c*), respectively. Single atomic layers of iron precipitate were observed, with preferred orientations along which precipitates are formed. Simulated calculations by means of the dynamical theory of electron diffraction using models for the precipitate structure were in good agreement with our experimental results. The relation between the modulated structure and the precipitates is also discussed.
Resumo:
Ultrathin single quantum well (about one monolayer) grown on GaAs(001) substrate with GaAs cap layer has been studied by high resolution x-ray diffractometer on a beamline of the Beijing Synchrotron Radiation Facility. The interference fringes on both sides of the GaAs(004) Bragg peak are asymmetric and a range of weak fringes in the higher angle side of the Bragg peak is observed. The simulated results by using the kinematical diffraction method shows that the weak fringe range appears in the higher angle side when the phase shift introduced by the single quantum well is very slightly smaller than m pi (m:integer), and vice versa. After introducing a reasonable model of single quantum well, the simulated pattern is in good agreement with the experiment. (C) 1996 American Institute of Physics.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A series of NIR organic chromophores with donor-pi-acceptor-pi-donor structure are synthesized. Good thermal stability and strong photoluminescence in solid state render them suitable for application in light-emitting diodes. Exclusive near-infrared emission at 1080 nm with external quantum efficiency of 0.28% is obtained from the nondoped OLEDs. The longest electroluminescence wave-length is 1220 nm.
Resumo:
Four diboron-contained ladder-type pi-conjugated compounds 1-4 were designed and synthesized. Their thermal, photophysical, electrochemical properties, as well as density functional theory calculations, were fully investigated. The single crystals of compounds 1 and 3 were grown, and their crystal structures were determined by X-ray diffraction analysis. Both compounds have a ladder-type g-conjugated framework. Compounds I and 2 possess high thermal stabilities, moderate solid-state fluorescence quantum yields, as well as stable redox properties, indicating that they are possible candidates for emitters and charge-transporting materials in electroluminescent (EL) devices. The double-layer device with the configuration of [ITO/NPB (40 nm)/1 or 2 (70 nm)/LiF (0.5 nm)/Al (200 nm)] exhibited good EL performance with the maximum brightness exceeding 8000 cd/m(2).
Resumo:
A series of block copolymers containing nonconjugated spacer and 3D pi-pi stacking structure with simultaneous blue-, green-, and yellow-emitting units has been synthesized and characterized. The dependence of the energy transfer and electroluminescence (EL) properties of these block copolymers on the contents of oligo(phenylenevinylene)s has been investigated. The block copolymer (GEO8-BEO-YEO4) with 98.8% blue-emitting oligomer (BEO), 0.8% green-emitting oligomer (GEO), and 0.4% yellow-emitting oligomer (YEO) showed the best electroluminescent performance, exhibiting a maximum luminance of 2309 cd/m(2) and efficiency of 0.34 cd/A. The single-layer-polymer light-emitting diodes device based on GEO2-BEO-YEO4 emitted greenish white light with the CIE coordinates of (0.26, 0.37) at 10 V. The synergetic effect of the efficient energy transfer and 3D pi-pi stack of these block copolymers on the photoiuminescent and electroluminescent properties are investigated.
Resumo:
Chemical functionalization of single-walled carbon nanotubes (SWNTs) has constructed plenty of new structures with ample new properties into them. But the modification was often confined to organic molecules, either by covalence or non-covalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: Prussian blue (PB). And the molecular interactions between them were firstly investigated. Interestedly, pi-pi stacking interaction coupled with ionic interaction was found between SWNTs and PB. The electrochemical properties of SWNTs-PB were also investigated. It would pave a new pathway to manipulate molecular entities of SWNTs by cooperation with functional inorganic electroactive compounds.
Resumo:
A new bimetallic cluster complex with the formula [{Co(phen)(2)}(2)V4O12](H2O)-H-. was synthesized from the hydrothermal reaction of V2O5, H2C2O4, Co(NO3)(2), 1,10-phenanthroline (phen), (C4H9)(4)NOH and water. The compound crystallizes in an orthorhombic system with space group Pbcn and unit cell parameters a = 19.106(3) Angstrom, b = 15.250(3) Angstrom, c = 16.321(2) Angstrom, V = 4755.4(13) Angstrom(3), Z = 4 and R = 0.0318. The bimetallic cluster complex [{Co(phen)(2)}(2)V4O12](H2O)-H-. is composed of a discrete V4O124- cluster eovalently attached to two [Co(phen)(2)](2+) fragments and the discrete hexanuclear bimetallic clusters of [{Co(phen)(2)}(V4O12)-V-2](H2O)-H-. are further extended into interesting three-dimensional supermolecular arrays via pi-pi stacking interactions of phen groups. Other characterizations by elemental analysis, IR, and thermal analysis are also described.
Resumo:
The probability distribution of the four-phase invariants in the case of single isomorphous replacement has been developed to estimate some individual phases. An example of its application to obtain the phases having special values of 0, pi or +/-pi /2 is given for a known protein structure in space group P2(1)2(1)2(1). The phasing procedure includes the determination of starting phases and an iterative calculation. The initial values of starting phases, which are required by the formula, can be obtained from the estimate of one-phase seminvariants and by specifying the origin and enantiomorph. In addition, the calculations lead to two sets of possible phases for each type of reflection by assigning arbitrarily an initial phase value. The present method provides a possibility for the multisolution technique to increase greatly the number of known phases while keeping the number of the trials quite small.
Resumo:
Miscibility and crystallization behavior of solution-blended poly(ether ether ketone)/polyimide (PEEK/PI) blends were investigated by using DSC, optical microscopy and SAXS methods. Two kinds of PIs, YS-30 and PEI-E, which consist of the same diamine but different dianhydrides, were used in this work. The experimental results show that blends of PEEK/YS-30 are miscible over the entire composition range, as all the blends of different compositions exhibit a single glass transition temperature. The crystallization of PEEK was hindered by YS-30 in PEEK/YS-30 blends, of which the dominant morphology is interlamellar. On the other hand, blends of PEEK/PEI-E are immiscible, and the effect of PEI-E on the crystallization behavior of PEEK is weak. The crystallinity of PEEK in the isothermally crystallized PEEK/YS-30 blend specimens decreases with the increase in PI content. But the crystallinity of PEEK in the annealed samples almost keeps unchanged and reaches its maximum value, which is more than 50%. The spherulitic texture of the blends depends on both the blend composition and the molecular structure of the PIs used. The more PI added, the more imperfect the crystalline structure of PEEK. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Single chain single crystals (SCSC) of gutta percha (GP) were prepared by a dilute-solution spraying method. Electron diffraction (ED) patterns revealed that the single chain single crystal was of a new crystalline modification, the delta form. The images of SCSC of GP obtained with a high resolution electron microscope (HREM) showed a two dimensional periodic structure. Most of the images consisted of lattice fringes derived from the (001) zone. This is the first time that the single chain single crystal images of GP have been observed at a molecular level. Micrographs were image processed using optical filtering methods to improve the signal-to-noise ratio, and were compared with computer-generated simulations of the images. From the viewpoint of the defects seen in high resolution images, the crystal formation and melting processes are discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A new algorithm for computer perception of topological symmetry is proposed. A node library containing various kinds of nodes is built, and the index number of the library is used as initial atom class identifier (CI) to discriminate the different types of non-hydrogen atoms. The path index (PI) and ringindex (RI) are calculated from the CI, and the global topological enviroment is defined as the sum of PIs and RIs. The topological symmetry can be detected by the iterative calculation of the global topological enviroment.
Resumo:
A method for estimating the one-phase structure seminvariants (OPSSs) having values of 0 or pi has been proposed on the basis of the probabilistic theory of the three-phase structure invariants for a pair of isomorphous structures [Hauptman (1982). Acta Cryst. A38, 289-294]. The test calculations using error-free diffraction data of protein cytochrome c(550) and its PtCl42- derivative show that reliable estimates of a number of the OPSSs can be obtained. The reliability of the estimation increases with the increase of the differences between diffraction intensities of the native protein and its heavy-atom derivative. A means to estimate the parameters of the distribution from the diffraction ratio is suggested.