931 resultados para Distributions (probability)
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria delsConjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics espotencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funciódensitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps queles distribucions de probabilitat quàntiques
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
In this paper, we define a new scheme to develop and evaluate protection strategies for building reliable GMPLS networks. This is based on what we have called the network protection degree (NPD). The NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability, and an a posteriori evaluation, the failure impact degree (FID), which determines the impact on the network in case of failure, in terms of packet loss and recovery time. Having mathematical formulated these components, experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms in order to offer a certain degree of protection
Resumo:
In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation
Resumo:
BACKGROUND AND AIM The genotype-phenotype interaction in drug-induced liver injury (DILI) is a subject of growing interest. Previous studies have linked amoxicillin-clavulanate (AC) hepatotoxicity susceptibility to specific HLA alleles. In this study we aimed to examine potential associations between HLA class I and II alleles and AC DILI with regards to phenotypic characteristics, severity and time to onset in Spanish AC hepatotoxicity cases. METHODS High resolution genotyping of HLA loci A, B, C, DRB1 and DQB1 was performed in 75 AC DILI cases and 885 controls. RESULTS The distributions of class I alleles A*3002 (P/Pc = 2.6E-6/5E-5, OR 6.7) and B*1801 (P/Pc = 0.008/0.22, OR 2.9) were more frequently found in hepatocellular injury cases compared to controls. In addition, the presence of the class II allele combination DRB1*1501-DQB1*0602 (P/Pc = 5.1E-4/0.014, OR 3.0) was significantly increased in cholestatic/mixed cases. The A*3002 and/or B*1801 carriers were found to be younger (54 vs 65 years, P = 0.019) and were more frequently hospitalized than the DRB1*1501-DQB1*0602 carriers. No additional alleles outside those associated with liver injury patterns were found to affect potential severity as measured by Hy's Law criteria. The phenotype frequencies of B*1801 (P/Pc = 0.015/0.42, OR 5.2) and DRB1*0301-DQB1*0201 (P/Pc = 0.0026/0.07, OR 15) were increased in AC DILI cases with delayed onset compared to those corresponding to patients without delayed onset, while the opposite applied to DRB1*1302-DQB1*0604 (P/Pc = 0.005/0.13, OR 0.07). CONCLUSIONS HLA class I and II alleles influence the AC DILI signature with regards to phenotypic expression, latency presentation and severity in Spanish patients.
Resumo:
BACKGROUND The effect of the macronutrient composition of the usual diet on long term weight maintenance remains controversial. METHODS 373,803 subjects aged 25-70 years were recruited in 10 European countries (1992-2000) in the PANACEA project of the EPIC cohort. Diet was assessed at baseline using country-specific validated questionnaires and weight and height were measured at baseline and self-reported at follow-up in most centers. The association between weight change after 5 years of follow-up and the iso-energetic replacement of 5% of energy from one macronutrient by 5% of energy from another macronutrient was assessed using multivariate linear mixed-models. The risk of becoming overweight or obese after 5 years was investigated using multivariate Poisson regressions stratified according to initial Body Mass Index. RESULTS A higher proportion of energy from fat at the expense of carbohydrates was not significantly associated with weight change after 5 years. However, a higher proportion of energy from protein at the expense of fat was positively associated with weight gain. A higher proportion of energy from protein at the expense of carbohydrates was also positively associated with weight gain, especially when carbohydrates were rich in fibre. The association between percentage of energy from protein and weight change was slightly stronger in overweight participants, former smokers, participants ≥60 years old, participants underreporting their energy intake and participants with a prudent dietary pattern. Compared to diets with no more than 14% of energy from protein, diets with more than 22% of energy from protein were associated with a 23-24% higher risk of becoming overweight or obese in normal weight and overweight subjects at baseline. CONCLUSION Our results show that participants consuming an amount of protein above the protein intake recommended by the American Diabetes Association may experience a higher risk of becoming overweight or obese during adult life.
Resumo:
AimAlthough habitat suitability maps derived from species distribution models (SDMs) are often assumed to highlight locations that can sustain healthy populations over time, the relationship between suitability scores and fitness parameters has rarely been tested thoroughly. LocationZackenberg Valley, north-east Greenland. MethodsUsing 14years of data (1997-2010) representing three wader species (dunlin Calidris alpina, sanderling Calidris alba and ruddy turnstone Arenaria interpres), we tested the relationships between modelled suitability and fitness parameters at nesting locations. ResultsAmong the three species examined, only the ruddy turnstone exhibited significant relationships between suitability and nest success, but over time rather than space. During years with extensive snow cover in the landscape, the nesting sites of ruddy turnstone occurred in different habitats than were typically used across years. Moreover, in years with extensive snow cover, the ruddy turnstone initiated nests later and suffered from higher egg predation rates. Main conclusionOur results suggest that SDMs derived from species occurrences that include years of low reproductive success may over-estimate the potential suitable habitat in the landscape. Whenever possible, variation in reproductive success should be considered when building models to inform species' response to environmental change. species' response to environmental change.
Resumo:
INTRODUCTION According to genome wide association (GWA) studies as well as candidate gene approaches, Behçet's disease (BD) is associated with human leukocyte antigen (HLA)-A and HLA-B gene regions. The HLA-B51 has been consistently associated with the disease, but the role of other HLA class I molecules remains controversial. Recently, variants in non-HLA genes have also been associated with BD. The aims of this study were to further investigate the influence of the HLA region in BD and to explore the relationship with non-HLA genes recently described to be associated in other populations. METHODS This study included 304 BD patients and 313 ethnically matched controls. HLA-A and HLA-B low resolution typing was carried out by PCR-SSOP Luminex. Eleven tag single nucleotide polymorphisms (SNPs) located outside of the HLA-region, previously described associated with the disease in GWA studies and having a minor allele frequency in Caucasians greater than 0.15 were genotyped using TaqMan assays. Phenotypic and genotypic frequencies were estimated by direct counting and distributions were compared using the χ(2) test. RESULTS In addition to HLA-B*51, HLA-B*57 was found as a risk factor in BD, whereas, B*35 was found to be protective. Other HLA-A and B specificities were suggestive of association with the disease as risk (A*02 and A*24) or protective factors (A*03 and B*58). Regarding the non-HLA genes, the three SNPs located in IL23R and one of the SNPs in IL10 were found to be significantly associated with susceptibility to BD in our population. CONCLUSION Different HLA specificities are associated with Behçet's disease in addition to B*51. Other non-HLA genes, such as IL23R and IL-10, play a role in the susceptibility to the disease.
Resumo:
BACKGROUND The objective of this research was to evaluate data from a randomized clinical trial that tested injectable diacetylmorphine (DAM) and oral methadone (MMT) for substitution treatment, using a multi-domain dichotomous index, with a Bayesian approach. METHODS Sixty two long-term, socially-excluded heroin injectors, not benefiting from available treatments were randomized to receive either DAM or MMT for 9 months in Granada, Spain. Completers were 44 and data at the end of the study period was obtained for 50. Participants were determined to be responders or non responders using a multi-domain outcome index accounting for their physical and mental health and psychosocial integration, used in a previous trial. Data was analyzed with Bayesian methods, using information from a similar study conducted in The Netherlands to select a priori distributions. On adding the data from the present study to update the a priori information, the distribution of the difference in response rates were obtained and used to build credibility intervals and relevant probability computations. RESULTS In the experimental group (n = 27), the rate of responders to treatment was 70.4% (95% CI 53.287.6), and in the control group (n = 23), it was 34.8% (95% CI 15.354.3). The probability of success in the experimental group using the a posteriori distributions was higher after a proper sensitivity analysis. Almost the whole distribution of the rates difference (the one for diacetylmorphine minus methadone) was located to the right of the zero, indicating the superiority of the experimental treatment. CONCLUSION The present analysis suggests a clinical superiority of injectable diacetylmorphine compared to oral methadone in the treatment of severely affected heroin injectors not benefiting sufficiently from the available treatments. TRIAL REGISTRATION Current Controlled Trials ISRCTN52023186.
Resumo:
The aim of this work is to make known the multicentric project AMCAC, whose objective is to describe the geographical distribution of mortality from all causes in census groups of the provincial capitals of Andalusia and Catalonia during 1992-2002 and 1994-2000 respectively, and to study the relationship between the sociodemographic characteristics of the census groups and mortality. This is an ecological study in which the analytical unit is the census group. The data correspond to 298,731 individuals (152,913 men and 145,818 women) who died during the study periods in the towns of Almeria, Barcelona, Cadiz, Cordoba, Girona, Granada, Huelva, Jaen, Lleida, Malaga, Seville and Tarragona during the study periods. The dependent variable is the number of deaths observed per census group. The independent variables are the percentage of unemployment, illiteracy and manual workers. Estimation of the moderated relative risk and the study of the associations among the sociodemographic characteristics of the census groups and the mortality will be done for each town and each sex using the Besag-York-Mollie model. Dissemination of the results will help to improve and broaden knowledge about the population's health, and will provide an important starting point to establish the influence of contextual variables on the health of urban populations.
Resumo:
This paper presents and discusses further aspects of the subjectivist interpretation of probability (also known as the 'personalist' view of probabilities) as initiated in earlier forensic and legal literature. It shows that operational devices to elicit subjective probabilities - in particular the so-called scoring rules - provide additional arguments in support of the standpoint according to which categorical claims of forensic individualisation do not follow from a formal analysis under that view of probability theory.
Resumo:
Les écosystèmes fournissent de nombreuses ressources et services écologiques qui sont utiles à la population humaine. La biodiversité est une composante essentielle des écosystèmes et maintient de nombreux services. Afin d'assurer la permanence des services écosystémiques, des mesures doivent être prises pour conserver la biodiversité. Dans ce but, l'acquisition d'informations détaillées sur la distribution de la biodiversité dans l'espace est essentielle. Les modèles de distribution d'espèces (SDMs) sont des modèles empiriques qui mettent en lien des observations de terrain (présences ou absences d'une espèce) avec des descripteurs de l'environnement, selon des courbes de réponses statistiques qui décrive la niche réalisée des espèces. Ces modèles fournissent des projections spatiales indiquant les lieux les plus favorables pour les espèces considérées. Le principal objectif de cette thèse est de fournir des projections plus réalistes de la distribution des espèces et des communautés en montagne pour le climat présent et futur en considérant non-seulement des variables abiotiques mais aussi biotiques. Les régions de montagne et l'écosystème alpin sont très sensibles aux changements globaux et en même temps assurent de nombreux services écosystémiques. Cette thèse est séparée en trois parties : (i) fournir une meilleure compréhension du rôle des interactions biotiques dans la distribution des espèces et l'assemblage des communautés en montagne (ouest des Alpes Suisses), (ii) permettre le développement d'une nouvelle approche pour modéliser la distribution spatiale de la biodiversité, (iii) fournir des projections plus réalistes de la distribution future des espèces ainsi que de la composition des communautés. En me focalisant sur les papillons, bourdons et plantes vasculaires, j'ai détecté des interactions biotiques importantes qui lient les espèces entre elles. J'ai également identifié la signature du filtre de l'environnement sur les communautés en haute altitude confirmant l'utilité des SDMs pour reproduire ce type de processus. A partir de ces études, j'ai contribué à l'amélioration méthodologique des SDMs dans le but de prédire les communautés en incluant les interactions biotiques et également les processus non-déterministes par une approche probabiliste. Cette approche permet de prédire non-seulement la distribution d'espèces individuelles, mais également celle de communautés dans leur entier en empilant les projections (S-SDMs). Finalement, j'ai utilisé cet outil pour prédire la distribution d'espèces et de communautés dans le passé et le futur. En particulier, j'ai modélisé la migration post-glaciaire de Trollius europaeus qui est à l'origine de la structure génétique intra-spécifique chez cette espèce et évalué les risques de perte face au changement climatique. Finalement, j'ai simulé la distribution des communautés de bourdons pour le 21e siècle afin d'évaluer les changements probables dans ce groupe important de pollinisateurs. La diversité fonctionnelle des bourdons va être altérée par la perte d'espèces spécialistes de haute altitude et ceci va influencer la pollinisation des plantes en haute altitude. - Ecosystems provide a multitude of resources and ecological services, which are useful to human. Biodiversity is an essential component of those ecosystems and guarantee many services. To assure the permanence of ecosystem services for future generation, measure should be applied to conserve biodiversity. For this purpose, the acquisition of detailed information on how biodiversity implicated in ecosystem function is distributed in space is essential. Species distribution models (SDMs) are empirical models relating field observations to environmental predictors based on statistically-derived response surfaces that fit the realized niche. These models result in spatial predictions indicating locations of the most suitable environment for the species and may potentially be applied to predict composition of communities and their functional properties. The main objective of this thesis was to provide more accurate projections of species and communities distribution under current and future climate in mountains by considering not solely abiotic but also biotic drivers of species distribution. Mountain areas and alpine ecosystems are considered as particularly sensitive to global changes and are also sources of essential ecosystem services. This thesis had three main goals: (i) a better ecological understanding of biotic interactions and how they shape the distribution of species and communities, (ii) the development of a novel approach to the spatial modeling of biodiversity, that can account for biotic interactions, and (iii) ecologically more realistic projections of future species distributions, of future composition and structure of communities. Focusing on butterfly and bumblebees in interaction with the vegetation, I detected important biotic interactions for species distribution and community composition of both plant and insects along environmental gradients. I identified the signature of environmental filtering processes at high elevation confirming the suitability of SDMs for reproducing patterns of filtering. Using those case-studies, I improved SDMs by incorporating biotic interaction and accounting for non-deterministic processes and uncertainty using a probabilistic based approach. I used improved modeling to forecast the distribution of species through the past and future climate changes. SDMs hindcasting allowed a better understanding of the spatial range dynamic of Trollius europaeus in Europe at the origin of the species intra-specific genetic diversity and identified the risk of loss of this genetic diversity caused by climate change. By simulating the future distribution of all bumblebee species in the western Swiss Alps under nine climate change scenarios for the 21st century, I found that the functional diversity of this pollinator guild will be largely affected by climate change through the loss of high elevation specialists. In turn, this will have important consequences on alpine plant pollination.
Resumo:
The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the time dependency of nucleation and growth rates. We have also developed an approximate analytical cell size probability density function. Finally, we have applied our approach to the distributions resulting from solid phase crystallization under isochronal heating conditions
Resumo:
SummaryDiscrete data arise in various research fields, typically when the observations are count data.I propose a robust and efficient parametric procedure for estimation of discrete distributions. The estimation is done in two phases. First, a very robust, but possibly inefficient, estimate of the model parameters is computed and used to indentify outliers. Then the outliers are either removed from the sample or given low weights, and a weighted maximum likelihood estimate (WML) is computed.The weights are determined via an adaptive process such that if the data follow the model, then asymptotically no observation is downweighted.I prove that the final estimator inherits the breakdown point of the initial one, and that its influence function at the model is the same as the influence function of the maximum likelihood estimator, which strongly suggests that it is asymptotically fully efficient.The initial estimator is a minimum disparity estimator (MDE). MDEs can be shown to have full asymptotic efficiency, and some MDEs have very high breakdown points and very low bias under contamination. Several initial estimators are considered, and the performances of the WMLs based on each of them are studied.It results that in a great variety of situations the WML substantially improves the initial estimator, both in terms of finite sample mean square error and in terms of bias under contamination. Besides, the performances of the WML are rather stable under a change of the MDE even if the MDEs have very different behaviors.Two examples of application of the WML to real data are considered. In both of them, the necessity for a robust estimator is clear: the maximum likelihood estimator is badly corrupted by the presence of a few outliers.This procedure is particularly natural in the discrete distribution setting, but could be extended to the continuous case, for which a possible procedure is sketched.RésuméLes données discrètes sont présentes dans différents domaines de recherche, en particulier lorsque les observations sont des comptages.Je propose une méthode paramétrique robuste et efficace pour l'estimation de distributions discrètes. L'estimation est faite en deux phases. Tout d'abord, un estimateur très robuste des paramètres du modèle est calculé, et utilisé pour la détection des données aberrantes (outliers). Cet estimateur n'est pas nécessairement efficace. Ensuite, soit les outliers sont retirés de l'échantillon, soit des faibles poids leur sont attribués, et un estimateur du maximum de vraisemblance pondéré (WML) est calculé.Les poids sont déterminés via un processus adaptif, tel qu'asymptotiquement, si les données suivent le modèle, aucune observation n'est dépondérée.Je prouve que le point de rupture de l'estimateur final est au moins aussi élevé que celui de l'estimateur initial, et que sa fonction d'influence au modèle est la même que celle du maximum de vraisemblance, ce qui suggère que cet estimateur est pleinement efficace asymptotiquement.L'estimateur initial est un estimateur de disparité minimale (MDE). Les MDE sont asymptotiquement pleinement efficaces, et certains d'entre eux ont un point de rupture très élevé et un très faible biais sous contamination. J'étudie les performances du WML basé sur différents MDEs.Le résultat est que dans une grande variété de situations le WML améliore largement les performances de l'estimateur initial, autant en terme du carré moyen de l'erreur que du biais sous contamination. De plus, les performances du WML restent assez stables lorsqu'on change l'estimateur initial, même si les différents MDEs ont des comportements très différents.Je considère deux exemples d'application du WML à des données réelles, où la nécessité d'un estimateur robuste est manifeste : l'estimateur du maximum de vraisemblance est fortement corrompu par la présence de quelques outliers.La méthode proposée est particulièrement naturelle dans le cadre des distributions discrètes, mais pourrait être étendue au cas continu.
Resumo:
Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.