940 resultados para Distance-based techniques
Resumo:
Due to the growth of design size and complexity, design verification is an important aspect of the Logic Circuit development process. The purpose of verification is to validate that the design meets the system requirements and specification. This is done by either functional or formal verification. The most popular approach to functional verification is the use of simulation based techniques. Using models to replicate the behaviour of an actual system is called simulation. In this thesis, a software/data structure architecture without explicit locks is proposed to accelerate logic gate circuit simulation. We call thus system ZSIM. The ZSIM software architecture simulator targets low cost SIMD multi-core machines. Its performance is evaluated on the Intel Xeon Phi and 2 other machines (Intel Xeon and AMD Opteron). The aim of these experiments is to: • Verify that the data structure used allows SIMD acceleration, particularly on machines with gather instructions ( section 5.3.1). • Verify that, on sufficiently large circuits, substantial gains could be made from multicore parallelism ( section 5.3.2 ). • Show that a simulator using this approach out-performs an existing commercial simulator on a standard workstation ( section 5.3.3 ). • Show that the performance on a cheap Xeon Phi card is competitive with results reported elsewhere on much more expensive super-computers ( section 5.3.5 ). To evaluate the ZSIM, two types of test circuits were used: 1. Circuits from the IWLS benchmark suit [1] which allow direct comparison with other published studies of parallel simulators.2. Circuits generated by a parametrised circuit synthesizer. The synthesizer used an algorithm that has been shown to generate circuits that are statistically representative of real logic circuits. The synthesizer allowed testing of a range of very large circuits, larger than the ones for which it was possible to obtain open source files. The experimental results show that with SIMD acceleration and multicore, ZSIM gained a peak parallelisation factor of 300 on Intel Xeon Phi and 11 on Intel Xeon. With only SIMD enabled, ZSIM achieved a maximum parallelistion gain of 10 on Intel Xeon Phi and 4 on Intel Xeon. Furthermore, it was shown that this software architecture simulator running on a SIMD machine is much faster than, and can handle much bigger circuits than a widely used commercial simulator (Xilinx) running on a workstation. The performance achieved by ZSIM was also compared with similar pre-existing work on logic simulation targeting GPUs and supercomputers. It was shown that ZSIM simulator running on a Xeon Phi machine gives comparable simulation performance to the IBM Blue Gene supercomputer at very much lower cost. The experimental results have shown that the Xeon Phi is competitive with simulation on GPUs and allows the handling of much larger circuits than have been reported for GPU simulation. When targeting Xeon Phi architecture, the automatic cache management of the Xeon Phi, handles and manages the on-chip local store without any explicit mention of the local store being made in the architecture of the simulator itself. However, targeting GPUs, explicit cache management in program increases the complexity of the software architecture. Furthermore, one of the strongest points of the ZSIM simulator is its portability. Note that the same code was tested on both AMD and Xeon Phi machines. The same architecture that efficiently performs on Xeon Phi, was ported into a 64 core NUMA AMD Opteron. To conclude, the two main achievements are restated as following: The primary achievement of this work was proving that the ZSIM architecture was faster than previously published logic simulators on low cost platforms. The secondary achievement was the development of a synthetic testing suite that went beyond the scale range that was previously publicly available, based on prior work that showed the synthesis technique is valid.
Resumo:
OBJETIVO. La presente investigación pretendió determinar complicaciones posnatales en los embarazos gemelares Monocorial y Bianmiotico en mujeres de 15 a 45 años del Hospital Homero Castanier Crespo de la ciudad de Azogues. MATERIAL Y MÉTODOS. Es una investigación cuantitativa y retrospectiva, se trabajó con una muestra de 41 historias clínicas, se utilizó un formulario elaborado y validado por las autoras. La fuente información fue secundaria mediante la revisión de archivos estadísticos y registros estadísticos de los embarazos gemelares que acudieron al Hospital Homero Castanier Crespo. La información fue procesada en el programa estadístico SPSS versión 1.5 y los resultados son presentados en tablas simples de frecuencias y porcentajes. RESULTADOS En la investigación se enconcontrò un 12.1 % del 100% presenta un diagnóstico de preclampsia ,en cuanto a la instrucción tenemos un 36.6% dando lugar 15 usuarias en cuanto al estado civil tenemos un porcentaje del 70.7% dando lugar a 29 usuarias el lugar de residencia tenemos el 56.1% que equivale a 23 usuarias en la placenta amniótico tenemos 65.9% con un total de 27 usuarias en cuanto los pesos de los Recién nacidos tenemos de bajo peso de 62.2% que equivale 51 en cuanto al Apgar tenemos 95.1%. CONCLUSIÓN. La investigación permitió determinar complicaciones posnatales en los embarazos gemelares Monocorial y Bianmiotico en mujeres de 15 a 45 años, verificamos que el gemelo número dos nace con bajo peso ya que el gemelo uno recibe todos los beneficios durante la gestación también se encontró hiperbilirrubinemia mas SDR.
Resumo:
Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.
Resumo:
Phonation distortion leaves relevant marks in a speaker's biometric profile. Dysphonic voice production may be used for biometrical speaker characterization. In the present paper phonation features derived from the glottal source (GS) parameterization, after vocal tract inversion, is proposed for dysphonic voice characterization in Speaker Verification tasks. The glottal source derived parameters are matched in a forensic evaluation framework defining a distance-based metric specification. The phonation segments used in the study are derived from fillers, long vowels, and other phonation segments produced in spontaneous telephone conversations. Phonated segments from a telephonic database of 100 male Spanish native speakers are combined in a 10-fold cross-validation task to produce the set of quality measurements outlined in the paper. Shimmer, mucosal wave correlate, vocal fold cover biomechanical parameter unbalance and a subset of the GS cepstral profile produce accuracy rates as high as 99.57 for a wide threshold interval (62.08-75.04%). An Equal Error Rate of 0.64 % can be granted. The proposed metric framework is shown to behave more fairly than classical likelihood ratios in supporting the hypothesis of the defense vs that of the prosecution, thus ofering a more reliable evaluation scoring. Possible applications are Speaker Verification and Dysphonic Voice Grading.
Resumo:
Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.
Resumo:
Nitrobenzoxadiazole (NBD)-labeled lipids are popular fluorescent membrane probes. However, the understanding of important aspects of the photophysics of NBD remains incomplete, including the observed shift in the emission spectrum of NBD-lipids to longer wavelengths following excitation at the red edge of the absorption spectrum (red-edge excitation shift or REES). REES of NBD-lipids in membrane environments has been previously interpreted as reflecting restricted mobility of solvent surrounding the fluorophore. However, this requires a large change in the dipole moment (Dm) of NBD upon excitation. Previous calculations of the value of Dm of NBD in the literature have been carried out using outdated semi-empirical methods, leading to conflicting values. Using up-to-date density functional theory methods, we recalculated the value of Dm and verified that it is rather small (B2 D). Fluorescence measurements confirmed that the value of REES is B16 nm for 1,2-dioleoyl-sn-glycero-3- phospho-L-serine-N-(NBD) (NBD-PS) in dioleoylphosphatidylcholine vesicles. However, the observed shift is independent of both the temperature and the presence of cholesterol and is therefore insensitive to the mobility and hydration of the membrane. Moreover, red-edge excitation leads to an increased contribution of the decay component with a shorter lifetime, whereas time-resolved emission spectra of NBD-PS displayed an atypical blue shift following excitation. This excludes restrictions to solvent relaxation as the cause of the measured REES and TRES of NBD, pointing instead to the heterogeneous transverse location of probes as the origin of these effects. The latter hypothesis was confirmed by molecular dynamics simulations, from which the calculated heterogeneity of the hydration and location of NBD correlated with the measured fluorescence lifetimes/REES. Globally, our combination of theoretical and experiment-based techniques has led to a considerably improved understanding of the photophysics of NBD and a reinterpretation of its REES in particular.
Resumo:
Radars are expected to become the main sensors in various civilian applications, especially for autonomous driving. Their success is mainly due to the availability of low cost integrated devices, equipped with compact antenna arrays, and computationally efficient signal processing techniques. This thesis focuses on the study and the development of different deterministic and learning based techniques for colocated multiple-input multiple-output (MIMO) radars. In particular, after providing an overview on the architecture of these devices, the problem of detecting and estimating multiple targets in stepped frequency continuous wave (SFCW) MIMO radar systems is investigated and different deterministic techniques solving it are illustrated. Moreover, novel solutions, based on an approximate maximum likelihood approach, are developed. The accuracy achieved by all the considered algorithms is assessed on the basis of the raw data acquired from low power wideband radar devices. The results demonstrate that the developed algorithms achieve reasonable accuracies, but at the price of different computational efforts. Another important technical problem investigated in this thesis concerns the exploitation of machine learning and deep learning techniques in the field of colocated MIMO radars. In this thesis, after providing a comprehensive overview of the machine learning and deep learning techniques currently being considered for use in MIMO radar systems, their performance in two different applications is assessed on the basis of synthetically generated and experimental datasets acquired through a commercial frequency modulated continuous wave (FMCW) MIMO radar. Finally, the application of colocated MIMO radars to autonomous driving in smart agriculture is illustrated.
Resumo:
This PhD project focuses on the study of the early stages of bone biomineralization in 2D and 3D cultures of osteoblast-like SaOS-2 osteosarcoma cells, exposed to an osteogenic cocktail. The efficacy of osteogenic treatment was assessed on 2D cell cultures after 7 days. A large calcium minerals production, an overexpression of osteogenic markers and of alkaline phosphatase activity occurred in treated samples. TEM microscopy and cryo-XANES micro-spectroscopy were performed for localizing and characterizing Ca-depositions. These techniques revealed a different localization and chemical composition of Ca-minerals over time and after treatment. Nevertheless, the Mito stress test showed in treated samples a significant increase in maximal respiration levels associated to an upregulation of mitochondrial biogenesis indicative of an ongoing differentiation process. The 3D cell cultures were realized using two different hydrogels: a commercial collagen type I and a mixture of agarose and lactose-modified chitosan (CTL). Both biomaterials showed good biocompatibility with SaOS-2 cells. The gene expression analysis of SaOS-2 cells on collagen scaffolds indicated an osteogenic commitment after treatment. and Alizarin red staining highlighted the presence of Ca-spots in the differentiated samples. In addition, the intracellular magnesium quantification, and the X-ray microscopy on mineral depositions, suggested the incorporation of Mg during the early stages of bone formation process., SaOS-2 cells treated with osteogenic cocktail produced Ca mineral deposits also on CTL/agarose scaffolds, as confirmed by alizarin red staining. Further studies are underway to evaluate the differentiation also at the genetic level. Thanks to the combination of conventional laboratory methods and synchrotron-based techniques, it has been demonstrated that SaOS-2 is a suitable model for the study of biomineralization in vitro. These results have contributed to a deeper knowledge of biomineralization process in osteosarcoma cells and could provide new evidences about a therapeutic strategy acting on the reversibility of tumorigenicity by osteogenic induction.
Resumo:
Introduction. The term New Psychoactive Substances (NPS) encompasses a broad category of drugs which have become available on the market in recent years and whose illicit use for recreational purposes has recently exploded. The analysis of NPS usually requires mass spectrometry based techniques. The aim of our study was to define the preva-lence of NPS consumption in patients with a history of drug addiction followed by Public Services for Pathological Addictions, with the purpose of highlighting the effective presence of NPS within the area of Bologna and evaluating their association with classical drugs of abuse (DOA). Materials and methods. Sustained by literature, a multi-analyte UHPLC-MS/MS method for the identification of 127 NPS (phenethylamines, arylcyclohexylamines, synthetic opioids, tryptamines, synthetic cannabinoids, synthetic cathinones, designer benzodiazepines) and 15 classic drugs of abuse (DOA) in hair samples was developed and validated according to International Guidelines [112]. Samples pretreatment consisted of washing steps and overnight incubation at 45°C in an acid mixture of methanol and water. After cooling, supernatant were injected into the chromatographic system coupled with a tandem mass spectrometry detector. Results. Successful validation was achieved for almost all of the compounds. The method met all the required technical parameters. LOQ was set from 4 to 80 pg/mg The developed method was applied to 107 cases (85 males and 22 females) of clinical interest. Out of 85 hair samples resulting positive to classical drugs of abuse, NPS were found in twelve (8 male and 4 female). Conclusion. The present methodology represents an easy, low cost, wide-panel method for the de-tection of 127 NPS and 15 DOA in hair samples. Such multi-analyte methods facilitates the study of the prevalence of drugs abused that will enable the competent control authorities to obtain evi-dence-based reports regarding the critical spread of the threat represented by NPS.
Resumo:
Les analyses effectuées dans le cadre de ce mémoire ont été réalisées à l'aide du module MatchIt disponible sous l’environnent d'analyse statistique R. / Statistical analyzes of this thesis were performed using the MatchIt package available in the statistical analysis environment R.
Resumo:
The paper analyses the reengineering concept as it comes from software engineering and management fields. We combine two viewpoints and apply them to solve a problem of reengineering of a distance study system, in general, and the unit of learning, in particular. We propose a framework for reengineering of unit of learning, based on general model of software reengineering, and present a case study, in which we describe, how one topic of distance study course was reengineered, considering triple consistency principle and requirements for computer science. The proposed framework contributes to increasing quality, effectiveness and systematization of delivering distance studies.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the use of Raman spectroscopy to identify the spectral differences between normal (N), benign hyperplasia (BPH) and adenocarcinoma (CaP) in fragments of prostate biopsies in vitro with the aim of developing a spectral diagnostic model for tissue classification. A dispersive Raman spectrometer was used with 830 nm wavelength and 80 mW excitation. Following Raman data collection and tissue histopathology (48 fragments diagnosed as N, 43 as BPH and 14 as CaP), two diagnostic models were developed in order to extract diagnostic information: the first using PCA and Mahalanobis analysis techniques and the second one a simplified biochemical model based on spectral features of cholesterol, collagen, smooth muscle cell and adipocyte. Spectral differences between N, BPH and CaP tissues, were observed mainly in the Raman bands associated with proteins, lipids, nucleic and amino acids. The PCA diagnostic model showed a sensitivity and specificity of 100%, which indicates the ability of PCA and Mahalanobis distance techniques to classify tissue changes in vitro. Also, it was found that the relative amount of collagen decreased while the amount of cholesterol and adipocyte increased with severity of the disease. Smooth muscle cell increased in BPH tissue. These characteristics were used for diagnostic purposes.
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.