946 resultados para Discrete generator coordinate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several discharge areas by laser-guided discharge (LGD) were compared with those by common arc discharge. The randomicity of discharge areas by common arc discharge was controlled by laser guiding on two scales: large scale (the spacing of the discharge areas) and small scale (the inside of the discharge area). The position of the discharge area overlapped completely with a laser focus; therefore, the distribution and surface shape of the discharge areas were controlled. The stochastic movement of anode spot in the discharge area was controlled by laser guiding. As such, the repetitive melting and solidifying of microstructures in the discharge area was constrained. The tempered microstruc- tures in the discharge area were voided, the utilization efficiency of input energy was improved, and the strengthened depth of the discharge areas was increased. The regularity of cross-sectional shape of the discharge area was also improved. The hardness of microstructures in both discharge areas is greater than that of the base material. The highest level of hardness of microstructures in both discharge areas measures above 1000 HV. In summary, the hardness ofmicrostructures in the discharge area by LGD is larger and more discrete than that by common arc discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first thesis topic is a perturbation method for resonantly coupled nonlinear oscillators. By successive near-identity transformations of the original equations, one obtains new equations with simple structure that describe the long time evolution of the motion. This technique is related to two-timing in that secular terms are suppressed in the transformation equations. The method has some important advantages. Appropriate time scalings are generated naturally by the method, and don't need to be guessed as in two-timing. Furthermore, by continuing the procedure to higher order, one extends (formally) the time scale of valid approximation. Examples illustrate these claims. Using this method, we investigate resonance in conservative, non-conservative and time dependent problems. Each example is chosen to highlight a certain aspect of the method.

The second thesis topic concerns the coupling of nonlinear chemical oscillators. The first problem is the propagation of chemical waves of an oscillating reaction in a diffusive medium. Using two-timing, we derive a nonlinear equation that determines how spatial variations in the phase of the oscillations evolves in time. This result is the key to understanding the propagation of chemical waves. In particular, we use it to account for certain experimental observations on the Belusov-Zhabotinskii reaction.

Next, we analyse the interaction between a pair of coupled chemical oscillators. This time, we derive an equation for the phase shift, which measures how much the oscillators are out of phase. This result is the key to understanding M. Marek's and I. Stuchl's results on coupled reactor systems. In particular, our model accounts for synchronization and its bifurcation into rhythm splitting.

Finally, we analyse large systems of coupled chemical oscillators. Using a continuum approximation, we demonstrate mechanisms that cause auto-synchronization in such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emphasis in reactor physics research has shifted toward investigations of fast reactors. The effects of high energy neutron processes have thus become fundamental to our understanding, and one of the most important of these processes is nuclear inelastic scattering. In this research we include inelastic scattering as a primary energy transfer mechanism, and study the resultant neutron energy spectrum in an infinite medium. We assume that the moderator material has a high mass number, so that in a laboratory coordinate system the energy loss of an inelastically scattered neutron may be taken as discrete. It is then consistent to treat elastic scattering with an age theory expansion. Mathematically these assumptions lead to balance equations of the differential-difference type.

The steady state problem is explored first by way of Laplace transformation of the energy variable. We then develop another steady state technique, valid for multiple inelastic level excitations, which depends on the level structure satisfying a physically reasonable constraint. In all cases the solutions we generate are compared with results obtained by modeling inelastic scattering with a separable, evaporative kernel.

The time dependent problem presents some new difficulties. By modeling the elastic scattering cross section in a particular way, we generate solutions to this more interesting problem. We conjecture the method of characteristics may be useful in analyzing time dependent problems with general cross sections. These ideas are briefly explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The spectrum of dissolved mercury atoms in simple liquids has been shown to be capable of revealing information concerning local structures in these liquids.

Part II

Infrared intensity perturbations in simple solutions have been shown to involve more detailed interaction than just dielectric polarization. No correlation has been found between frequency shifts and intensity enhancements.

Part III

Evidence for perturbed rotation of HCl in rare gas matrices has been found. The magnitude of the barrier to rotation is concluded to be of order of 30 cm^(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is concerned with the development of a new discrete element method (DEM) based on Non-Uniform Rational Basis Splines (NURBS). With NURBS, the new DEM is able to capture sphericity and angularity, the two particle morphological measures used in characterizing real grain geometries. By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing rectangle (DIRECT) global optimization procedure is employed as a solution procedure to the closest-point projection problem, which enables the contact treatment of non-convex particles. A contact dynamics (CD) approach to the NURBS-based discrete method is also formulated. By combining particle shape flexibility, properties of implicit time-integration, and non-penetrating constraints, we target applications in which the classical DEM either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD implementation is made simple by adopting a variational framework, which enables the resulting discrete problem to be readily solved using off-the-shelf mathematical programming solvers. The capabilities of the NURBS-based DEM are demonstrated through 2D numerical examples that highlight the effects of particle morphology on the macroscopic response of granular assemblies under quasistatic and dynamic flow conditions, and a 3D characterization of material response in the shear band of a real triaxial specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I.

Various studies designed to elucidate the electronic structure of the arsenic donor ligand, o-phenylenebisdimethylarsine (diarsine), have been carried out. The electronic spectrum of diarsine has been measured at 300 and 77˚K. Electronic spectra of the molecular complexes of various substituted organoarsines and phosphines with tetracyanoethylene have been measured and used to estimate the relative ionization potentials of these molecules.

Uv photolysis of arsines in frozen solution (96˚K) has yielded thermally labile, paramagnetic products. These include the molecular cations of the photolyzed compounds. The species (diars)+ exhibits hyper-fine splitting due to two equivalent 75As(I=3/2) nuclei. Resonances due to secondary products are reported and assignments discussed.

Evidence is presented for the involvement of d-orbitals in the bonding of arsines. In (diars)+ there is mixing of arsenic “lone-pair” orbitals with benzene ring π-orbitals.

II.

Detailed electronic spectral measurements at 300 and 77˚K have been carried out on five-coordinate complexes of low-spin nickel(II), including complexes of both trigonal bipyramidal (TBP) and square pyramidal (SPY) geometry. TBP complexes are of the form NiLX+ (X=halide or cyanide,

L = Qƭ(CH2)3As(CH3)2]3 or

P [hexagon - Q'CH3] , Q = P, As,

Q’=S, Se).

The electronic spectra of these compounds exhibit a novel feature at low temperature. The first ligand field band, which is asymmetric in the room temperature solution spectrum, is considerably more symmetrical at 77˚K. This effect is interpreted in terms of changes in the structure of the complex.

The SPY complexes are of the form Ni(diars)2Xz (X=CL, Br, CNS, CN, thiourea, NO2, As). On the basis of the spectral results, the d-level ordering is concluded to be xy ˂ xz, yz ˂ z2 ˂˂ x2 - y2. Central to this interpretation is identification of the symmetry-allowed 1A11E (xz, yz → x2 - y2) transition. This assignment was facilitated by the low temperature measurements.

An assignment of the charge-transfer spectra of the five-coordinate complexes is reported, and electronic spectral criteria for distinguishing the two limiting geometries are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a 1955 paper, Ky Fan, Olga Taussky, and John Todd presented discrete analogues of inequalities of Wirtinger type, and by taking limits they were able to recover the continuous inequalities. We generalize their techniques to mixed and higher derivatives and inequalities with weight functions in the integrals. We have also considered analogues of inequalities of Müller and Redheffer and have used these inequalities to derive a necessary and sufficient condition on ordered pairs of numbers so that the first number is the square norm of the kth derivative of some periodic function and the second number is the square norm of the mth derivative of the same periodic function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a path-following phase unwrapping algorithm and a phase unwrapping algorithm based on discrete cosine transform (DCT) which accelerates the Computation and suppresses the propagation of noise. Through analysis of fringe pattern with serious noises simulated in mathematic model, we make a contrast between path-following algorithm and DCT algorithm. The advantages and disadvantages or analytical fringe pattern are also given through comparison of two algorithms. Three-dimensional experimental results have been given to prove the validity of these algorithms. Despite DCT phase unwrapping technique robustness and speed in some cases, it cannot be unwrapping inconsistencies phase. The path-following algorithm can be used in automation analysis of fringe patterns with little influence of noise. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.