882 resultados para Discrete dynamical systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work is concerned with dynamical systems in presence of symmetries and reversing symmetries. We describe a construction process of subspaces that are invariant by linear Gamma-reversible-equivariant mappings, where Gamma is the compact Lie group of all the symmetries and reversing symmetries of such systems. These subspaces are the sigma-isotypic components, first introduced by Lamb and Roberts in (1999) [10] and that correspond to the isotypic components for purely equivariant systems. In addition, by representation theory methods derived from the topological structure of the group Gamma, two algebraic formulae are established for the computation of the sigma-index of a closed subgroup of Gamma. The results obtained here are to be applied to general reversible-equivariant systems, but are of particular interest for the more subtle of the two possible cases, namely the non-self-dual case. Some examples are presented. (C) 2011 Elsevier BM. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Building facilities have become important infrastructures for modern productive plants dedicated to services. In this context, the control systems of intelligent buildings have evolved while their reliability has evidently improved. However, the occurrence of faults is inevitable in systems conceived, constructed and operated by humans. Thus, a practical alternative approach is found to be very useful to reduce the consequences of faults. Yet, only few publications address intelligent building modeling processes that take into consideration the occurrence of faults and how to manage their consequences. In the light of the foregoing, a procedure is proposed for the modeling of intelligent building control systems, considersing their functional specifications in normal operation and in the of the event of faults. The proposed procedure adopts the concepts of discrete event systems and holons, and explores Petri nets and their extensions so as to represent the structure and operation of control systems for intelligent buildings under normal and abnormal situations. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research field of my PhD concerns mathematical modeling and numerical simulation, applied to the cardiac electrophysiology analysis at a single cell level. This is possible thanks to the development of mathematical descriptions of single cellular components, ionic channels, pumps, exchangers and subcellular compartments. Due to the difficulties of vivo experiments on human cells, most of the measurements are acquired in vitro using animal models (e.g. guinea pig, dog, rabbit). Moreover, to study the cardiac action potential and all its features, it is necessary to acquire more specific knowledge about single ionic currents that contribute to the cardiac activity. Electrophysiological models of the heart have become very accurate in recent years giving rise to extremely complicated systems of differential equations. Although describing the behavior of cardiac cells quite well, the models are computationally demanding for numerical simulations and are very difficult to analyze from a mathematical (dynamical-systems) viewpoint. Simplified mathematical models that capture the underlying dynamics to a certain extent are therefore frequently used. The results presented in this thesis have confirmed that a close integration of computational modeling and experimental recordings in real myocytes, as performed by dynamic clamp, is a useful tool in enhancing our understanding of various components of normal cardiac electrophysiology, but also arrhythmogenic mechanisms in a pathological condition, especially when fully integrated with experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis we dealt with the problem of describing a transportation network in which the objects in movement were subject to both finite transportation capacity and finite accomodation capacity. The movements across such a system are realistically of a simultaneous nature which poses some challenges when formulating a mathematical description. We tried to derive such a general modellization from one posed on a simplified problem based on asyncronicity in particle transitions. We did so considering one-step processes based on the assumption that the system could be describable through discrete time Markov processes with finite state space. After describing the pre-established dynamics in terms of master equations we determined stationary states for the considered processes. Numerical simulations then led to the conclusion that a general system naturally evolves toward a congestion state when its particle transition simultaneously and we consider one single constraint in the form of network node capacity. Moreover the congested nodes of a system tend to be located in adjacent spots in the network, thus forming local clusters of congested nodes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present article describes research in progress which is developing a simple, replicable methodology aimed at identifying the regularities and specificity of human behavior in conflict escalation and de-escalation prooesses. These research efforts will ultimately be used to study conflict dynamics across cultures. The experimental data collected through this methodology, together with case studies and aggregated, time-series macro data are key for identifying relevant parameters, systems' properties, and micromechanisms defining the behavior of naturally occurring conflict escalation and de-escalation dynamics. This, in turn, is critical for the development of realistic, empirically supported computational models. The article outlines the theoretical assumptions of Dynamical Systems Theory with regard to conflict dynamics, with an emphasis on the process of conflict escalation and de-escalation. Next, work on a methodology for empirical study of escalation processes from a DST perspective is outlined. Specifically, the development of a progressive scenario methodology designed to map escalation sequences, together with anexample of a preliminary study based on the proposed researcb paradigm, is presented. Implications of the approach for the study of culture are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Criminals are common to all societies. To fight against them the community takes different security measures as, for example, to bring about a police. Thus, crime causes a depletion of the common wealth not only by criminal acts but also because the cost of hiring a police force. In this paper, we present a mathematical model of a criminal-prone self-protected society that is divided into socio-economical classes. We study the effect of a non-null crime rate on a free-of-criminals society which is taken as a reference system. As a consequence, we define a criminal-prone society as one whose free-of-criminals steady state is unstable under small perturbations of a certain socio-economical context. Finally, we compare two alternative strategies to control crime: (i) enhancing police efficiency, either by enlarging its size or by updating its technology, against (ii) either reducing criminal appealing or promoting social classes at risk

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The extraordinary increase of new information technologies, the development of Internet, the electronic commerce, the e-government, mobile telephony and future cloud computing and storage, have provided great benefits in all areas of society. Besides these, there are new challenges for the protection of information, such as the loss of confidentiality and integrity of electronic documents. Cryptography plays a key role by providing the necessary tools to ensure the safety of these new media. It is imperative to intensify the research in this area, to meet the growing demand for new secure cryptographic techniques. The theory of chaotic nonlinear dynamical systems and the theory of cryptography give rise to the chaotic cryptography, which is the field of study of this thesis. The link between cryptography and chaotic systems is still subject of intense study. The combination of apparently stochastic behavior, the properties of sensitivity to initial conditions and parameters, ergodicity, mixing, and the fact that periodic points are dense, suggests that chaotic orbits resemble random sequences. This fact, and the ability to synchronize multiple chaotic systems, initially described by Pecora and Carroll, has generated an avalanche of research papers that relate cryptography and chaos. The chaotic cryptography addresses two fundamental design paradigms. In the first paradigm, chaotic cryptosystems are designed using continuous time, mainly based on chaotic synchronization techniques; they are implemented with analog circuits or by computer simulation. In the second paradigm, chaotic cryptosystems are constructed using discrete time and generally do not depend on chaos synchronization techniques. The contributions in this thesis involve three aspects about chaotic cryptography. The first one is a theoretical analysis of the geometric properties of some of the most employed chaotic attractors for the design of chaotic cryptosystems. The second one is the cryptanalysis of continuos chaotic cryptosystems and finally concludes with three new designs of cryptographically secure chaotic pseudorandom generators. The main accomplishments contained in this thesis are: v Development of a method for determining the parameters of some double scroll chaotic systems, including Lorenz system and Chua’s circuit. First, some geometrical characteristics of chaotic system have been used to reduce the search space of parameters. Next, a scheme based on the synchronization of chaotic systems was built. The geometric properties have been employed as matching criterion, to determine the values of the parameters with the desired accuracy. The method is not affected by a moderate amount of noise in the waveform. The proposed method has been applied to find security flaws in the continuous chaotic encryption systems. Based on previous results, the chaotic ciphers proposed by Wang and Bu and those proposed by Xu and Li are cryptanalyzed. We propose some solutions to improve the cryptosystems, although very limited because these systems are not suitable for use in cryptography. Development of a method for determining the parameters of the Lorenz system, when it is used in the design of two-channel cryptosystem. The method uses the geometric properties of the Lorenz system. The search space of parameters has been reduced. Next, the parameters have been accurately determined from the ciphertext. The method has been applied to cryptanalysis of an encryption scheme proposed by Jiang. In 2005, Gunay et al. proposed a chaotic encryption system based on a cellular neural network implementation of Chua’s circuit. This scheme has been cryptanalyzed. Some gaps in security design have been identified. Based on the theoretical results of digital chaotic systems and cryptanalysis of several chaotic ciphers recently proposed, a family of pseudorandom generators has been designed using finite precision. The design is based on the coupling of several piecewise linear chaotic maps. Based on the above results a new family of chaotic pseudorandom generators named Trident has been designed. These generators have been specially designed to meet the needs of real-time encryption of mobile technology. According to the above results, this thesis proposes another family of pseudorandom generators called Trifork. These generators are based on a combination of perturbed Lagged Fibonacci generators. This family of generators is cryptographically secure and suitable for use in real-time encryption. Detailed analysis shows that the proposed pseudorandom generator can provide fast encryption speed and a high level of security, at the same time. El extraordinario auge de las nuevas tecnologías de la información, el desarrollo de Internet, el comercio electrónico, la administración electrónica, la telefonía móvil y la futura computación y almacenamiento en la nube, han proporcionado grandes beneficios en todos los ámbitos de la sociedad. Junto a éstos, se presentan nuevos retos para la protección de la información, como la suplantación de personalidad y la pérdida de la confidencialidad e integridad de los documentos electrónicos. La criptografía juega un papel fundamental aportando las herramientas necesarias para garantizar la seguridad de estos nuevos medios, pero es imperativo intensificar la investigación en este ámbito para dar respuesta a la demanda creciente de nuevas técnicas criptográficas seguras. La teoría de los sistemas dinámicos no lineales junto a la criptografía dan lugar a la ((criptografía caótica)), que es el campo de estudio de esta tesis. El vínculo entre la criptografía y los sistemas caóticos continúa siendo objeto de un intenso estudio. La combinación del comportamiento aparentemente estocástico, las propiedades de sensibilidad a las condiciones iniciales y a los parámetros, la ergodicidad, la mezcla, y que los puntos periódicos sean densos asemejan las órbitas caóticas a secuencias aleatorias, lo que supone su potencial utilización en el enmascaramiento de mensajes. Este hecho, junto a la posibilidad de sincronizar varios sistemas caóticos descrita inicialmente en los trabajos de Pecora y Carroll, ha generado una avalancha de trabajos de investigación donde se plantean muchas ideas sobre la forma de realizar sistemas de comunicaciones seguros, relacionando así la criptografía y el caos. La criptografía caótica aborda dos paradigmas de diseño fundamentales. En el primero, los criptosistemas caóticos se diseñan utilizando circuitos analógicos, principalmente basados en las técnicas de sincronización caótica; en el segundo, los criptosistemas caóticos se construyen en circuitos discretos u ordenadores, y generalmente no dependen de las técnicas de sincronización del caos. Nuestra contribución en esta tesis implica tres aspectos sobre el cifrado caótico. En primer lugar, se realiza un análisis teórico de las propiedades geométricas de algunos de los sistemas caóticos más empleados en el diseño de criptosistemas caóticos vii continuos; en segundo lugar, se realiza el criptoanálisis de cifrados caóticos continuos basados en el análisis anterior; y, finalmente, se realizan tres nuevas propuestas de diseño de generadores de secuencias pseudoaleatorias criptográficamente seguros y rápidos. La primera parte de esta memoria realiza un análisis crítico acerca de la seguridad de los criptosistemas caóticos, llegando a la conclusión de que la gran mayoría de los algoritmos de cifrado caóticos continuos —ya sean realizados físicamente o programados numéricamente— tienen serios inconvenientes para proteger la confidencialidad de la información ya que son inseguros e ineficientes. Asimismo una gran parte de los criptosistemas caóticos discretos propuestos se consideran inseguros y otros no han sido atacados por lo que se considera necesario más trabajo de criptoanálisis. Esta parte concluye señalando las principales debilidades encontradas en los criptosistemas analizados y algunas recomendaciones para su mejora. En la segunda parte se diseña un método de criptoanálisis que permite la identificaci ón de los parámetros, que en general forman parte de la clave, de algoritmos de cifrado basados en sistemas caóticos de Lorenz y similares, que utilizan los esquemas de sincronización excitador-respuesta. Este método se basa en algunas características geométricas del atractor de Lorenz. El método diseñado se ha empleado para criptoanalizar eficientemente tres algoritmos de cifrado. Finalmente se realiza el criptoanálisis de otros dos esquemas de cifrado propuestos recientemente. La tercera parte de la tesis abarca el diseño de generadores de secuencias pseudoaleatorias criptográficamente seguras, basadas en aplicaciones caóticas, realizando las pruebas estadísticas, que corroboran las propiedades de aleatoriedad. Estos generadores pueden ser utilizados en el desarrollo de sistemas de cifrado en flujo y para cubrir las necesidades del cifrado en tiempo real. Una cuestión importante en el diseño de sistemas de cifrado discreto caótico es la degradación dinámica debida a la precisión finita; sin embargo, la mayoría de los diseñadores de sistemas de cifrado discreto caótico no ha considerado seriamente este aspecto. En esta tesis se hace hincapié en la importancia de esta cuestión y se contribuye a su esclarecimiento con algunas consideraciones iniciales. Ya que las cuestiones teóricas sobre la dinámica de la degradación de los sistemas caóticos digitales no ha sido totalmente resuelta, en este trabajo utilizamos algunas soluciones prácticas para evitar esta dificultad teórica. Entre las técnicas posibles, se proponen y evalúan varias soluciones, como operaciones de rotación de bits y desplazamiento de bits, que combinadas con la variación dinámica de parámetros y con la perturbación cruzada, proporcionan un excelente remedio al problema de la degradación dinámica. Además de los problemas de seguridad sobre la degradación dinámica, muchos criptosistemas se rompen debido a su diseño descuidado, no a causa de los defectos esenciales de los sistemas caóticos digitales. Este hecho se ha tomado en cuenta en esta tesis y se ha logrado el diseño de generadores pseudoaleatorios caóticos criptogr áficamente seguros.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The organizational structure of the companies in the biomass energy sector, regarding the supply chain management services, can be greatly improved through the use of software decision support tools. These tools should be able to provide real-time alternative scenarios when deviations from the initial production plans are observed. To make this possible it is necessary to have representative production chain process models where several scenarios and solutions can be evaluated accurately. Due to its nature, this type of process is more adequately represented by means of event-based models. In particular, this work presents the modelling of a typical biomass production chain using the computing platform SIMEVENTS. Throughout the article details about the conceptual model, as well as simulation results, are provided

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.