841 resultados para Discrete Mathematics in Computer Science
Resumo:
This paper reports a number of findings from the Interests and Recruitment in Science (IRIS) study carried out in Australia in 2011. The findings concern the perceptions of first year university students in science, technology and engineering courses about the influence of museums/science centres and outreach activities on their choice of course. The study found that STE students in general tended to rate museums/science centres as more important in their decisions than outreach activities. However, a closer examination showed that females in engineering courses were significantly more inclined to rate outreach activities as important than were males in engineering courses or females in other courses. The implications of this finding for strategies to encourage more young women into engineering are discussed.
Resumo:
In this paper we describe the approaches adopted to generate the runs submitted to ImageCLEFPhoto 2009 with an aim to promote document diversity in the rankings. Four of our runs are text based approaches that employ textual statistics extracted from the captions of images, i.e. MMR [1] as a state of the art method for result diversification, two approaches that combine relevance information and clustering techniques, and an instantiation of Quantum Probability Ranking Principle. The fifth run exploits visual features of the provided images to re-rank the initial results by means of Factor Analysis. The results reveal that our methods based on only text captions consistently improve the performance of the respective baselines, while the approach that combines visual features with textual statistics shows lower levels of improvements.
Resumo:
The present study was conducted to investigate whether ob- servers are equally prone to overlook any kinds of visual events in change blindness. Capitalizing on the finding from visual search studies that abrupt appearance of an object effectively captures observers' attention, the onset of a new object and the offset of an existing object were contrasted regarding their detectability when they occurred in a naturalistic scene. In an experiment, participants viewed a series of photograph pairs in which layouts of seven or eight objects were depicted. One object either appeared in or disappeared from the layout, and participants tried to detect this change. Results showed that onsets were detected more quickly than offsets, while they were detected with equivalent ac- curacy. This suggests that the primacy of onset over offset is a robust phenomenon that likely makes onsets more resistant to change blindness under natural viewing conditions.
Resumo:
Recurrence relations in mathematics form a very powerful and compact way of looking at a wide range of relationships. Traditionally, the concept of recurrence has often been a difficult one for the secondary teacher to convey to students. Closely related to the powerful proof technique of mathematical induction, recurrences are able to capture many relationships in formulas much simpler than so-called direct or closed formulas. In computer science, recursive coding often has a similar compactness property, and, perhaps not surprisingly, suffers from similar problems in the classroom as recurrences: the students often find both the basic concepts and practicalities elusive. Using models designed to illuminate the relevant principles for the students, we offer a range of examples which use the modern spreadsheet environment to powerfully illustrate the great expressive and computational power of recurrences.
Resumo:
Cheating detection in linear secret sharing is considered. The model of cheating extends the Tompa-Woll attack and includes cheating during multiple (unsuccessful) recovery of the secret. It is shown that shares in most linear schemes can be split into subshares. Subshares can be used by participants to trade perfectness of the scheme with cheating prevention. Evaluation of cheating prevention is given in the context of different strategies applied by cheaters.
Resumo:
Over about the last decade, people involved in game development have noted the need for more formal models and tools to support the design phase of games. It is argued that the present lack of such formal tools is currently hindering knowledge transfer among designers. Formal visual languages, on the other hand, can help to more effectively express, abstract and communicate game design concepts. Moreover, formal tools can assist in the prototyping phase, allowing designers to reason about and simulate game mechanics on an abstract level. In this paper we present an initial investigation into whether workflow patterns – which have already proven to be effective for modeling business processes – are a suitable way to model task succession in games. Our preliminary results suggest that workflow patterns show promise in this regard but some limitations, especially in regard to time constraints, currently restrict their potential.
Resumo:
We study the natural problem of secure n-party computation (in the passive, computationally unbounded attack model) of the n-product function f G (x 1,...,x n ) = x 1 ·x 2 ⋯ x n in an arbitrary finite group (G,·), where the input of party P i is x i ∈ G for i = 1,...,n. For flexibility, we are interested in protocols for f G which require only black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our results are as follows. First, on the negative side, we show that if (G,·) is non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing f G exists. Second, on the positive side, we initiate an approach for construction of black-box protocols for f G based on k-of-k threshold secret sharing schemes, which are efficiently implementable over any black-box group G. We reduce the problem of constructing such protocols to a combinatorial colouring problem in planar graphs. We then give two constructions for such graph colourings. Our first colouring construction gives a protocol with optimal collusion resistance t < n/2, but has exponential communication complexity O(n*2t+1^2/t) group elements (this construction easily extends to general adversary structures). Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has efficient communication complexity O(n*t^2) group elements. Furthermore, we believe that our results can be improved by further study of the associated combinatorial problems.
Resumo:
For Design Science Research (DSR) to gain wide credence as a research paradigm in Information Systems (IS), it must contribute to theory. “Theory cannot be improved until we improve the theorizing process, and we cannot improve the theorizing process until we describe it more explicitly, operate it more self-consciously, and decouple it from validation more deliberately” (Weick 1989, p. 516). With the aim of improved design science theorizing, we propose a DSR abstraction-layers framework that integrates, interlates, and harmonizes key methodological notions, primary of which are: 1) the Design Science (DS), Design Research (DR), and Routine Design (RD) distinction (Winter 2008); 2) Multi Grounding in IS Design Theory (ISDT) (Goldkuhl & Lind 2010); 3) the Idealized Model for Theory Development (IM4TD) (Fischer & Gregor 2011); and 4) the DSR Theorizing Framework (Lee et al. 2011). Though theorizing, or the abstraction process, has been the subject of healthy discussion in DSR, important questions remain. With most attention to date having focused on theorizing for Design Research (DR), a key stimulus of the layered view was the realization that Design Science (DS) produces abstract knowledge at a higher level of generality. The resultant framework includes four abstraction layers: (i) Design Research (DR) 1st Abstract Layer, (ii) Design Science (DS) 2nd Abstract Layer, (iii) DSR Incubation 3rd Layer, and (iv) Routine Design 4th Layer. Differentiating and inter-relating these layers will aid DSR researchers to discover, position, and amplify their DSR contributions. Additionally, consideration of the four layers can trigger creative perspectives that suggest unplanned outputs. The first abstraction layer, including its alternative patterns of activity, is well recognized in the literature. The other layers, however, are less well recognized; and the integrated representation of layers is novel.
Resumo:
We propose a reliable and ubiquitous group key distribution scheme that is suitable for ad hoc networks. The scheme has self-initialisation and self-securing features. The former feature allows a cooperation of an arbitrary number of nodes to initialise the system, and it also allows node admission to be performed in a decentralised fashion. The latter feature allows a group member to determine the group key remotely while maintaining the system security. We also consider a decentralised solution of establishing secure point-to-point communication. The solution allows a new node to establish a secure channel with every existing node if it has pre-existing secure channels with a threshold number of the existing nodes.
Resumo:
The Common Scrambling Algorithm Stream Cipher (CSASC) is a shift register based stream cipher designed to encrypt digital video broadcast. CSA-SC produces a pseudo-random binary sequence that is used to mask the contents of the transmission. In this paper, we analyse the initialisation process of the CSA-SC keystream generator and demonstrate weaknesses which lead to state convergence, slid pairs and shifted keystreams. As a result, the cipher may be vulnerable to distinguishing attacks, time-memory-data trade-off attacks or slide attacks.
Resumo:
There is substantial attention worldwide to the quality of secondary school teaching in STEM in Education. This paper reports on the use of Outcome Mapping (OM) as an approach to guide and monitor change in teacher practice and a visual tool, shaped as a Star, to benchmark and monitor this behaviour. OM and the visual tool were employed to guide and document three secondary teachers’ behaviour as they planned, implemented and assessed a science unit in the new Australian standards-referenced curriculum. Five key outcome markers in the teachers’ behaviour were identified together with progress markers — cumulative qualitative indicators — leading to these outcomes. The use of a Star to benchmark and track teachers’ behaviours was particularly useful because it showed teacher behaviour on multiple dimensions simultaneously at various points in time. It also highlighted priorities in need of further attention and provided a pathway to achievement. Hence, OM and the Star representation provide both theoretical and pragmatic approaches to enhancing quality in STEM teaching.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
Environmental monitoring has become increasingly important due to the significant impact of human activities and climate change on biodiversity. Environmental sound sources such as rain and insect vocalizations are a rich and underexploited source of information in environmental audio recordings. This paper is concerned with the classification of rain within acoustic sensor re-cordings. We present the novel application of a set of features for classifying environmental acoustics: acoustic entropy, the acoustic complexity index, spectral cover, and background noise. In order to improve the performance of the rain classification system we automatically classify segments of environmental recordings into the classes of heavy rain or non-rain. A decision tree classifier is experientially compared with other classifiers. The experimental results show that our system is effective in classifying segments of environmental audio recordings with an accuracy of 93% for the binary classification of heavy rain/non-rain.
Resumo:
This paper describes a design framework intended to conceptually map the influence that game design has on the creative activity people engage in during gameplay. The framework builds on behavioral and verbal analysis of people playing puzzle games. The analysis was designed to better understand the extent to which gameplay activities within different games facilitate creative problem solving. We have used an expert review process to evaluate these games in terms of their game design elements and have taken a cognitive action approach to this process to investigate how particular elements produce the potential for creative activity. This paper proposes guidelines that build upon our understanding of the relationship between the creative processes that players undertake during a game and the components of the game that allow these processes to occur. These guidelines may be used in the game design process to better facilitate creative gameplay activity.