881 resultados para Digtially-Driven Transformations
Resumo:
A phase-field model for dealing with dynamic instabilities in membranes is presented. We use it to study curvature-driven pearling instability in vesicles induced by the anchorage of amphiphilic polymers on the membrane. Within this model, we obtain the morphological changes reported in recent experiments. The formation of a homogeneous pearled structure is achieved by consequent pearling of an initial cylindrical tube from the tip. For high enough concentration of anchors, we show theoretically that the homogeneous pearled shape is energetically less favorable than an inhomogeneous one, with a large sphere connected to an array of smaller spheres.
Resumo:
An experimental study of the acoustic emission generated during a martensitic transformation is presented. A statistical analysis of the amplitude and lifetime of a large number of signals has revealed power-law behavior for both magnitudes. The exponents of these distributions have been evaluated and, through independent measurements of the statistical lifetime to amplitude dependence, we have checked the scaling relation between the exponents. Our results are discussed in terms of current ideas on avalanche dynamics.
Resumo:
We have investigated hysteresis and the return-point memory (RPM) property in deterministic cellular automata with avalanche dynamics. The RPM property reflects a partial ordering of metastable states, preserved by the dynamics. Recently, Sethna et al. [Phys. Rev. Lett. 70, 3347 (1993)] proved this behavior for a homogeneously driven system with static disorder. This Letter shows that the partial ordering and the RPM can be displayed as well by systems driven heterogeneously, as a result of its own evolution dynamics. In particular, we prove the RPM property for a deterministic 2D sandpile automaton driven at a central site.
Resumo:
We present a study of a phase-separation process induced by the presence of spatially correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation.
Resumo:
We extend the mechanism for noise-induced phase transitions proposed by Ibañes et al. [Phys. Rev. Lett. 87, 020601 (2001)] to pattern formation phenomena. In contrast with known mechanisms for pure noise-induced pattern formation, this mechanism is not driven by a short-time instability amplified by collective effects. The phenomenon is analyzed by means of a modulated mean field approximation and numerical simulations.
Resumo:
We have systematically analyzed six different reticular models with quenched disorder and no thermal fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition, appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed critical exponents using finite size scaling techniques and shown that they are consistent with universal values depending only on the space dimensionality d.
Resumo:
An equation for mean first-passage times of non-Markovian processes driven by colored noise is derived through an appropriate backward integro-differential equation. The equation is solved in a Bourret-like approximation. In a weak-noise bistable situation, non-Markovian effects are taken into account by an effective diffusion coefficient. In this situation, our results compare satisfactorily with other approaches and experimental data.
Resumo:
We discuss the relation between spacetime diffeomorphisms and gauge transformations in theories of the YangMills type coupled with Einsteins general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure YangMills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead, the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the spacetime metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer. 2000 American Institute of Physics.
Resumo:
New results on the theory of constrained systems are applied to characterize the generators of Noethers symmetry transformations. As a byproduct, an algorithm to construct gauge transformations in Hamiltonian formalism is derived. This is illustrated with two relevant examples.
Resumo:
The relationship between the Poincar and Galilei groups allows us to write the Poincar wave equations for arbitrary spin as a Fourier transform of the Galilean ones. The relation between the Lagrangian formulation for both cases is also studied.
Resumo:
We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified.
Resumo:
We develop a theory of canonical transformations for presymplectic systems, reducing this concept to that of canonical transformations for regular coisotropic canonical systems. In this way we can also link these with the usual canonical transformations for the symplectic reduced phase space. Furthermore, the concept of a generating function arises in a natural way as well as that of gauge group.
Resumo:
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped fronts, respectively. We find that contact lines are considerably more stable for hydrophilic substrates and small inclination angles. The qualitative behavior of the front in the linear regime remains independent of the wetting properties of the substrate as a single dispersion relation describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth shaped patterns are observed for hydrophilic substrates and low inclination angles, while finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger dynamics show a transient in which neighboring fingers interact, followed by a steady state where each finger grows independently.