910 resultados para Digital Manufacturing, Digital Mock Up, Simulation Intent
Resumo:
Introduction: Root resorption can cause damage in orthodontic patients. Digital subtraction radiography (DSR) is a useful resource for the detection of mineral losses. The purpose of this study was to compare the efficacy of digital radiography (DR) and DSR in detecting simulated external root resorption. Examiner agreement between the 2 techniques was also evaluated. Methods: Root resorptions of various sizes were simulated on the apical and lingual aspects of 49 teeth from 9 dry human mandibles. The teeth were radiographed in standardized conditions. The radiographs were registered with Regeemy Image Registration and Mosaicking (version 0.2.43-RCB, DPI-INPE, Sao Jose dos Campos, São Paulo, Brazil) and subtracted with Image Tool (University of Texas Health Science Center at San Antonio). The subtracted images and the digital radiographs were evaluated by 3 oral radiologists. Results: No statistically significant differences were found for the methods in the detection of apical root resorptions, independently from lesion size, and of lingual resorptions of 1.2 mm or greater. DSR was significantly better than DR for detection of lingual resorptions up to 1 mm. Resorptions less than 0.5 mm were not precisely detected by either method. DSR provided better intraexaminer and interexaminer agreement than did DR. Conclusions: Both methods are precise for detection of apical root resorptions as small as 0.5 mm and lingual resorptions of 1 mm or more. However, DSR frequently performed better than did DR. (Am J Orthod Dentofacial Orthop 2011;139:324-33)
Resumo:
This paper describes a speech enhancement system (SES) based on a TMS320C31 digital signal processor (DSP) for real-time application. The SES algorithm is based on a modified spectral subtraction method and a new speech activity detector (SAD) is used. The system presents a medium computational load and a sampling rate up to 18 kHz can be used. The goal is load and a sampling rate up to 18 kHz can be used. The goal is to use it to reduce noise in an analog telephone line.
Resumo:
Grinding process is usually the last finishing process of a precision component in the manufacturing industries. This process is utilized for manufacturing parts of different materials, so it demands results such as low roughness, dimensional and shape error control, optimum tool-life, with minimum cost and time. Damages on the parts are very expensive since the previous processes and the grinding itself are useless when the part is damaged in this stage. This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 e VC131 steels. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. In each test AE data was analyzed off-line, with results compared to inspection of each workpiece for burn and other metallurgical anomaly. A number of statistical signal processing tools have been evaluated.
Resumo:
The assessment of welfare issues has been a challenge for poultry producers, and lately welfare standards needs to be reached in order to agree with international market demand. This research proposes the use of continuous behavior monitoring in order to contribute for assessing welfare. A software was developed using the language Clarium. The software managed the recording of data as well as the data searching in the database Firebird. Both software and the observational methodology were tested in a trial conducted inside an environmental chamber, using three genetics of broiler breeders. Behavioral pattern was recorded and correlated to ambient thermal and aerial variation. Monitoring video cameras were placed on the roof facing the used for registering the bird's behavior. From video camera images were recorded during the total period when the ambient was bright, and for analyzing the video images a sample of 15min observation in the morning and 15 min in the afternoon was used, adding up to 30 min daily observation. A specific model so-called behavior was developed inside the software for counting specific behavior and its frequency of occurrence, as well as its duration. Electronic identification was recorded for 24h period. Behavioral video recording images was related to the data recorded using electronic identification.. Statistical analysis of data allowed to identify behavioral differences related to the change in thermal environment, and ultimately indicating thermal stress and departure from welfare conditions.
Resumo:
Today, the trend within the electronics industry is for the use of rapid and advanced simulation methodologies in association with synthesis toolsets. This paper presents an approach developed to support mixed-signal circuit design and analysis. The methodology proposed shows a novel approach to the problem of developing behvioural model descriptions of mixed-signal circuit topologies, by construction of a set of subsystems, that supports the automated mapping of MATLAB®/SIMULINK® models to structural VHDL-AMS descriptions. The tool developed, named MS 2SV, reads a SIMULINK® model file and translates it to a structural VHDL-AMS code. It also creates the file structure required to simulate the translated model in the System Vision™. To validate the methodology and the developed program, the DAC08, AD7524 and AD5450 data converters were studied and initially modelled in MATLAB®/ SIMULINK®. The VHDL-AMS code generated automatically by MS 2SV, (MATLAB®/SIMULINK® to System Vision™), was then simulated in the System Vision™. The simulation results show that the proposed approach, which is based on VHDL-AMS descriptions of the original model library elements, allows for the behavioural level simulation of complex mixed-signal circuits.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in gray shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the gray shades making up the image, and thus calculate the appropriateness of the pixels in relation to an homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. © 2007 IEEE.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in grey shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the grey shades making up the image and, thus, calculate the appropriateness of the pixels in relation to a homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. Copyright © 2009, Inderscience Publishers.
Resumo:
Includes bibliography
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Digital filtering of oscillations intrinsic to transmission line modeling based on lumped parameters
Resumo:
A correction procedure based on digital signal processing theory is proposed to smooth the numeric oscillations in electromagnetic transient simulation results from transmission line modeling based on an equivalent representation by lumped parameters. The proposed improvement to this well-known line representation is carried out with an Finite Impulse Response (FIR) digital filter used to exclude the high-frequency components associated with the spurious numeric oscillations. To prove the efficacy of this correction method, a well-established frequency-dependent line representation using state equations is modeled with an FIR filter included in the model. The results obtained from the state-space model with and without the FIR filtering are compared with the results simulated by a line model based on distributed parameters and inverse transforms. Finally, the line model integrated with the FIR filtering is also tested and validated based on simulations that include nonlinear and time-variable elements. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Artes - IA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ