994 resultados para Diffusion bonding (Metals)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range −10 to 25 ◦C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported. Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the dryingv for each trial. The determined Walli’s values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a mini-review of the development and contemporary applications of diffusion-sensitive nuclear magnetic resonance (NMR) techniques in biomedical sciences. Molecular diffusion is a fundamental physical phenomenon present in all biological systems. Due to the connection between experimentally measured diffusion metrics and the microscopic environment sensed by the diffusing molecules, diffusion measurements can be used for characterisation of molecular size, molecular binding and association, and the morphology of biological tissues. The emergence of magnetic resonance was instrumental to the development of biomedical applications of diffusion. We discuss the fundamental physical principles of diffusion NMR spectroscopy and diffusion MR imaging. The emphasis is placed on conceptual understanding, historical evolution and practical applications rather than complex technical details. Mathematical description of diffusion is presented to the extent that it is required for the basic understanding of the concepts. We present a wide range of spectroscopic and imaging applications of diffusion magnetic resonance, including colloidal drug delivery vehicles; protein association; characterisation of cell morphology; neural fibre tractography; cardiac imaging; and the imaging of load-bearing connective tissues. This paper is intended as an accessible introduction into the exciting and growing field of diffusion magnetic resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffus- ing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell mem- brane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the mol- ecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to dis-criminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In particle-strengthened metallic alloys, fatigue damage incubates at inclusion particles near the surface or at the change of geometries. Micromechanical simulation of inclusions such that the fatigue damage incubation mechanisms can be categorized. As micro-plasticity gradient field around different inclusions is different, a novel concept for nonlocal evaluation of micro-plasticity intensity is introduced. The effects of void aspects ration and spatial distributions are quantified for fatigue incubation life in the high-cycle fatigue regime. At last, these effects are integrated based on the statistical facts of inclusions to predict the fatigue life of structural components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports on an intervention program designed to facilitate transition to school of a whole community of Indigenous Australian children who had previously not been attending. The children were from families displaced from their traditional lands and experienced on-going social marginalisation and transience. A social capital framework was employed to track change in the children’s social inclusion and family-school engagement for two years, from school entry. Sociometric measurement and interview techniques were applied to assess the children’s social connectedness and peer relationship quality. Using these data, analyses examined whether bonding within the group supported or inhibited formation of new social relationships. Although transience disrupted attendance, there was a group trend towards increased social inclusion with some evidence that group bonds supported bridging to new social relationships. Change in family-school engagement was tracked using multi-informant interviews. Limited engagement between school and families presented an on-going challenge to sustained educational engagement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ideal coating materials for implants should be able to induce excellent osseointegration, which requires several important parameters, such as good bonding strength, limited inflammatory reaction, balanced osteoclastogenesis and osteogenesis, to gain well-functioning coated implants with long-term life span after implantation. Bioactive elements, like Sr, Mg and Si, have been found to play important roles in regulating the biological responses. It is of great interest to combine bioactive elements for developing bioactive coatings on Ti-6Al-4V orthopedic implants to elicit multidirectional effects on the osseointegration. In this study, Sr, Mg and Si-containing bioactive Sr2MgSi2O7 (SMS) ceramic coatings on Ti-6Al-4V were successfully prepared by plasma-spray coating method. The prepared SMS coatings have significantly higher bonding strength (~37MPa) than conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was also found that the prepared SMS coatings switch the macrophage phenotype into M2 extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca2+ and Toll-like receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also inhibited by SMS coatings. The expression of osteoclastogenesis related genes (RANKL and MCSF) in bone marrow derived mesenchymal cells (BMSCs) with the involvement of macrophages was decreased, while OPG expression was enhanced on SMS coatings compared to HA coatings, indicating that SMS coatings also downregulated the osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement of macrophages was comparable between SMS and HA coatings. Therefore, the prepared SMS coatings showed multidirectional effects, such as improving bonding strength, reducing inflammatory reaction and downregulating osteoclastic activities, but maintaining a comparable osteogenesis, as compared with HA coatings. The combination of bioactive elements of Sr, Mg and Si into bioceramic coatings can be a promising method to develop bioactive implants with multifunctional properties for orthopaedic application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.3), zinc (average EF 2.7) and other heavy metals. The modified degree of contamination indices (average 1.0) suggests that there is little contamination. By contrast, the Nemerow pollution index (average 5.8) suggests that Deception Bay is heavily contaminated. Cluster analysis was undertaken to identify groups of elements. Strong correlation between some elements and two distinct clusters of sampling sites based on sediment type was evident. These results have implications for pollution in complex marine environments where there is significant influx of sand and sediment into an estuarine environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured high strength Mg-5%Al-x%Nd alloys were prepared by mechanical alloying. Microstructural characterization reveled average crystalline size to be about 30 nm after mechanical alloying while it increased to about 90 nm after sintering and extrusion. Mechanical properties showed increase in 0.2% yield stress, ultimate tensile strength was attributed to reduction in gain size as well as to the enhanced diffusion after mechanical activation. Although ultra high yield stress was observed from the specimen with 5% Nd, its ductility was reduced to about 1.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the hydrated sodium salts of 4-chloro-3-nitrobenzoic acid {poly[aqua(μ4-4-chloro-3-nitrobenzoato)sodium(I)], [Na(C7H3ClNO4)(H2O)]n, (I)} and 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ3-2-amino-4-nitrobenzoato)sodium(I)], [Na(C7H5N2O4)(H2O)2]n, (II)}, and the hydrated potassium salt of 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ5-2-amino-4-nitrobenzoato)potassium(I)], [K(C7H5N2O4)(H2O)]n, (III)} have been determined and their complex polymeric structures described. All three structures are stabilized by intra- and intermolecular hydrogen bonding and strong π–π ring interactions. In the structure of (I), the distorted trigonal bipyrimidal NaO5 coordination polyhedron comprises a monodentate water molecule and four bridging carboxylate O-atom donors, generating a two-dimensional polymeric structure lying parallel to (001). Intra-layer hydrogen-bonding associations and strong inter-ring π–π interactions are present. Structure (II) has a distorted octahedral NaO6 stereochemistry, with four bridging O-atom donors, two from a single carboxylate group and two from a single nitro group and three from the two water molecules, one of which is bridging. Na centres are linked through centrosymmetric four-membered duplex water bridges and through 18-membered duplex head-to-tail ligand bridges. Similar centrosymmetric bridges are found in the structure of (III), and in both (II) and (III) strong inter-ring π–π interactions are found. A two-dimensional layered structure lying parallel to (010) is generated in (II), whereas in (III) the structure is three-dimensional. With (III), the irregular KO7 coordination polyhedron comprises a doubly bridging water molecule, a single bidentate bridging carboxylate O-atom donor and three bridging O-atom donors from the two nitro groups. A three-dimensional structure is generated. These coordination polymer structures are among the few examples of metal complexes of any type with either 4-chloro-3-nitrobenzoic acid or 4-nitroanthranilic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the use of the hydrogen bond acceptor properties of some phosphorus-containing functional groups for the assembly of a series of [2]rotaxanes. Phosphinamides, and the homologous thio– and selenophosphinamides, act as hydrogen bond acceptors that, in conjunction with an appropriately positioned amide group on the thread, direct the assembly of amide-based macrocycles around the axle to form rotaxanes in up to 60% yields. Employing solely phosphorus-based functional groups as the hydrogen bond accepting groups on the thread, a bis(phosphinamide) template and a phosphine oxide-phosphinamide template afforded the corresponding rotaxanes in 18 and 15 % yields, respectively. X-Ray crystallography of the rotaxanes shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and various hydrogen bond accepting groups on the thread, including rare examples of amide-to-phosphonamide, -thiophosphinamide and -selenophosphinamide groups. With a phosphine oxide-phosphinamide thread, the solid state structure of the rotaxane is remarkable, featuring no direct intercomponent hydrogen bonds but rather a hydrogen bond network involving water molecules that bridge the H-bonding groups of the macrocycle and thread through bifurcated hydrogen bonds. The incorporation of phosphorus-based functional groups into rotaxanes may prove useful for the development of molecular shuttles in which the macrocycle can be used to hinder or expose binding ligating sites for metal-based catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth kinetics of carbon nanofibers in a hydrocarbon plasma is studied. In addition to gas-phase and surface processes common to chemical vapor deposition, the model includes (unique to plasma-exposed catalyst surfaces) ion-induced dissociation of hydrocarbons, interaction of adsorbed species with incoming hydrogen atoms, and dissociation of hydrocarbon ions. It is shown that at low, nanodevice-friendly process temperatures the nanofibers grow via surface diffusion of carbon adatoms produced on the catalyst particle via ion-induced dissociation of a hydrocarbon precursor. These results explain a lower activation energy of nanofiber growth in a plasma and can be used for the synthesis of other nanoassemblies. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for electronegative plasmas containing charged dust or colloidal grains was used. Numerical solutions based on the model demonstrate how a low-pressure diffusion equilibrium of the complex electronegative plasma system is dynamically sustained through plasma particle sources.