837 resultados para Delivery of goods--Egypt--Oxyrhynchite Nome.
Resumo:
Abstract Background Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is a skin cancer therapy that still has limitations due to the low penetration of this drug into the skin. We have proposed in this work a delivery system for 5-ALA based on liposomes having lipid composition similar to the mammalian stratum corneum (SCLLs) in order to optimize its skin delivery in Photodynamic Therapy (PDT) of skin cancers. Methods SCLLs were obtained by reverse phase evaporation technique and size distribution of the vesicles was determinated by photon correlation spectroscopy. In vitro permeation profile was characterized using hairless mouse skin mounted in modified Franz diffusion cell. Results Size exclusion chromatography on gel filtration confirmed vesicle formation. SCLLs obtained by presented a degree of encapsulation of 5-ALA around 5.7%. A distribution of vesicle size centering at around 500 nm and 400 nm respectively for SCLLs and SCLLs containing 5-ALA was found. In vitro 5-ALA permeation study showed that SCLLs preparations presented higher skin retention significantly (p < 0.05) on the epidermis without SC + dermis, with a decreasing of skin permeation compared to aqueous solution. Conclusions The in vitro delivery performance provided by SCLLs lead to consider this systems adequate for the 5-ALA-PDT of skin cancer, since SCLLs have delivered 5-ALA to the target skin layers (viable epidermis + dermis) to be treated by topical PDT of skin cancer.
Resumo:
Abstract Background Particulate systems are well known to be able to deliver drugs with high efficiency and fewer adverse side effects, possibly by endocytosis of the drug carriers. On the other hand, cationic compounds and assemblies exhibit a general antimicrobial action. In this work, cationic nanoparticles built from drug, cationic lipid and polyelectrolytes are shown to be excellent and active carriers of amphotericin B against C. albicans. Results Assemblies of amphotericin B and cationic lipid at extreme drug to lipid molar ratios were wrapped by polyelectrolytes forming cationic nanoparticles of high colloid stability and fungicidal activity against Candida albicans. Experimental strategy involved dynamic light scattering for particle sizing, zeta-potential analysis, colloid stability, determination of AmB aggregation state by optical spectra and determination of activity against Candida albicans in vitro from cfu countings. Conclusion Novel and effective cationic particles delivered amphotericin B to C. albicans in vitro with optimal efficiency seldom achieved from drug, cationic lipid or cationic polyelectrolyte in separate. The multiple assembly of antibiotic, cationic lipid and cationic polyelctrolyte, consecutively nanostructured in each particle produced a strategical and effective attack against the fungus cells.
Resumo:
Pyroptosis is a molecularly controlled form of cell death that exhibits some features of apoptosis as well of necrosis. Pyroptosis is induced by inflammasome-activated caspase-1 or caspase-11 (caspase-4 in humans), as a result of distinct pathogenic or damage stimuli. Although pyroptosis displays some morphological and biochemical features of apoptosis, it has an inflammatory outcome due to the loss of plasma membrane integrity and the consequent release of intracellular contents, reminiscent to necrosis. Here, we use cytosolic delivery of purified flagellin as an experimental tool to trigger pyroptosis and describe potential methods to study this form of cell death. Finally, we discuss the advantages and limitations of these methods
Resumo:
Oggetto della ricerca è l’accertamento dell’esistenza, nonché la definizione, della strategia dall’UE in materia di controversie commerciali aventi ad oggetto l’interpretazione e l’applicazione di norme facenti capo agli Accordi OMC in materia di misure sanitarie e di barriere tecniche al commercio. Nella prima parte della tesi, si ricostruiscono gli obbiettivi perseguiti dall’UE in materia di controversie SPS e TBT. In questo contesto, un’importanza di primo piano è attribuita alla difesa dell’autonomia regolamentare dell’Unione. Ad essa si riconduce la prassi UE finalizzata a prevenire il sorgere di controversie sul piano bilaterale attraverso la conclusione di accordi di mutuo riconoscimento, la cui portata ella sottolinea essere tuttavia limitata. L’analisi di cinque controversie sorte in ambito OMC di cui l’Unione è o è stata parte convenuta e che si fondano su presunte o accertate violazioni delle norme facenti capo ai due accordi menzionati consente di classificare gli argomenti giuridici avanzati dall’Unione nel contesto di tali controversie. Nella seconda parte della ricerca, la candidata identifica i mezzi a servizio della strategia UE, in primo luogo, attraverso l’analisi del quadro giuridico relativo alla partecipazione dell’Unione e degli Stati Membri al sistema OMC di risoluzione delle controversie; in secondo luogo, attraverso lo studio, da un lato, dello status delle norme OMC nell’ordinamento UE e, dall’altro, degli effetti delle pronunce dell’Organo di Risoluzione delle Controversie e della questione della responsabilità dell’Unione per violazione del diritto OMC. Sulla base del lavoro di ricerca svolto, si conclude che una strategia dell’UE esiste nella misura in cui l’Unione persegue l’obbiettivo di preservare la propria autonomia regolamentare attraverso, anche se non esclusivamente, gli strumenti afferenti all’ordine giuridico interno analizzati nella seconda parte. La candidata conclude altresì che la riforma del diritto delle relazioni esterne operata dal Trattato di Lisbona può indurre un cambiamento di tale strategia.
Resumo:
The aim of this work is to contribute to the development of new multifunctional nanocarriers for improved encapsulation and delivery of anticancer and antiviral drugs. The work focused on water soluble and biocompatible oligosaccharides, the cyclodextrins (CyDs), and a new family of nanostructured, biodegradable carrier materials made of porous metal-organic frameworks (nanoMOFs). The drugs of choice were the anticancer doxorubicin (DOX), azidothymidine (AZT) and its phosphate derivatives and artemisinin (ART). DOX possesses a pharmacological drawback due to its self-aggregation tendency in water. The non covalent binding of DOX to a series of CyD derivatives, such as g-CyD, an epichlorohydrin crosslinked b-CyD polymer (pb-CyD) and a citric acid crosslinked g-CyD polymer (pg-CyD) was studied by UV visible absorption, circular dichroism and fluorescence. Multivariate global analysis of multiwavelength data from spectroscopic titrations allowed identification and characterization of the stable complexes. pg-CyD proved to be the best carrier showing both high association constants and ability to monomerize DOX. AZT is an important antiretroviral drug. The active form is AZT-triphosphate (AZT-TP), formed in metabolic paths of low efficiency. Direct administration of AZT-TP is limited by its poor stability in biological media. So the development of suitable carriers is highly important. In this context we studied the binding of some phosphorilated derivatives to nanoMOFs by spectroscopic methods. The results obtained with iron(III)-trimesate nanoMOFs allowed to prove that the binding of these drugs mainly occurs by strong iono-covalent bonds to iron(III) centers. On the basis of these and other results obtained in partner laboratories, it was possible to propose this highly versatile and “green” carrier system for delivery of phosphorylated nucleoside analogues. The interaction of DOX with nanoMOFs was also studied. Finally the binding of the antimalarial drug, artemisinin (ART) with two cyclodextrin-based carriers,the pb-CyD and a light responsive bis(b-CyD) host, was also studied.
Resumo:
In the first part of my thesis I studied the mechanism of initiation of the innate response to HSV-1. Innate immune response is the first line of defense set up by the cell to counteract pathogens infection and it is elicited by the activation of a number of membrane or intracellular receptors and sensors, collectively indicated as PRRs, Patter Recognition Receptors. We reported that the HSV pathogen-associated molecular patterns (PAMP) that activate Toll-like receptor 2 (TLR2) and lead to the initiation of innate response are the virion glycoproteins gH/gL and gB, which constitute the conserved fusion core apparatus across the Herpesvirus. Specifically gH/gL is sufficient to initiate a signaling cascade which leads to NF-κB activation. Then, by gain and loss-of-function approaches, we found that αvβ3-integrin is a sensor of and plays a crucial role in the innate defense against HSV-1. We showed that αvβ3-integrin signals through a pathway that concurs with TLR2, affects activation/induction of interferons type 1, NF-κB, and a polarized set of cytokines and receptors. Thus, we demonstrated that gH/gL is sufficient to induce IFN1 and NF-κB via this pathway. From these data, we proposed that αvβ3-integrin is considered a class of non-TLR pattern recognition receptors. In the second part of my thesis I studied the capacity of human mesenchymal stromal cells isolated by fetal membranes (FM-hMSCs) to be used as carrier cells for the delivery of retargeted R-LM249 virus. The use of systemically administrated carrier cells to deliver oncolytic viruses to tumoral targets is a promising strategy in oncolytic virotherapy. We observed that FM-hMSCs can be infected by R-LM249 and we optimized the infection condition; then we demonstrate that stromal cells sustain the replication of retargeted R-LM249 and spread it to target tumoral cells. From these preliminary data FM-hMSCs resulted suitable to be used as carrier cells
Resumo:
In an effort to reduce Interlibrary borrowing activity, while enhancing the Library collection, the Bertrand Library has initiated a program to purchase current monographs requested through ILL by Bucknell University students and faculty. The results have been a successful reduction in ILL workload, and a cost-effective means of document delivery as measured by average delivery time, cost-per-title, processing costs, and circulation statistics. This procedure reflects an overall change in our philosophy concerning document access and delivery, which led to the reorganization of ILL services and staff in the Bertrand Library.
Resumo:
Surgical repair of the rotator cuff repair is one of the most common procedures in orthopedic surgery. Despite it being the focus of much research, the physiological tendon-bone insertion is not recreated following repair and there is an anatomic non-healing rate of up to 94%. During the healing phase, several growth factors are upregulated that induce cellular proliferation and matrix deposition. Subsequently, this provisional matrix is replaced by the definitive matrix. Leukocyte- and platelet-rich fibrin (L-PRF) contain growth factors and has a stable dense fibrin matrix. Therefore, use of LPRF in rotator cuff repair is theoretically attractive. The aim of the present study was to determine 1) the optimal protocol to achieve the highest leukocyte content; 2) whether L-PRF releases growth factors in a sustained manner over 28 days; 3) whether standard/gelatinous or dry/compressed matrix preparation methods result in higher growth factor concentrations. 1) The standard L-PRF centrifugation protocol with 400 x g showed the highest concentration of platelets and leukocytes. 2) The L-PRF clots cultured in medium showed a continuous slow release with an increase in the absolute release of growth factors TGF-β1, VEGF and MPO in the first 7 days, and for IGF1, PDGF-AB and platelet activity (PF4=CXCL4) in the first 8 hours, followed by a decrease to close to zero at 28 days. Significantly higher levels of growth factor were expressed relative to the control values of normal blood at each culture time point. 3) Except for MPO and the TGFβ-1, there was always a tendency towards higher release of growth factors (i.e., CXCL4, IGF-1, PDGF-AB, and VEGF) in the standard/gelatinous- compared to the dry/compressed group. L-PRF in its optimal standard/gelatinous-type matrix can store and deliver locally specific healing growth factors for up to 28 days and may be a useful adjunct in rotator cuff repair.
Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis
Resumo:
Interest into the effects of carnosine on cellular metabolism is rapidly expanding. The first study to demonstrate in humans that chronic β-alanine (BA) supplementation (~3-6 g BA/day for ~4 weeks) can result in significantly augmented muscle carnosine concentrations (>50%) was only recently published. BA supplementation is potentially poised for application beyond the niche exercise and performance-enhancement field and into other more clinical populations. When examining all BA supplementation studies that directly measure muscle carnosine (n=8), there is a significant linear correlation between total grams of BA consumed (of daily intake ranges of 1.6-6.4 g BA/day) versus both the relative and absolute increases in muscle carnosine. Supporting this, a recent dose-response study demonstrated a large linear dependency (R2=0.921) based on the total grams of BA consumed over 8 weeks. The pre-supplementation baseline carnosine or individual subjects' body weight (from 65 to 90 kg) does not appear to impact on subsequent carnosine synthesis from BA consumption. Once muscle carnosine is augmented, the washout is very slow (~2%/week). Recently, a slow-release BA tablet supplement has been developed showing a smaller peak plasma BA concentration and delayed time to peak, with no difference in the area under the curve compared to pure BA in solution. Further, this slow-release profile resulted in a reduced urinary BA loss and improved retention, while at the same time, eliciting minimal paraesthesia symptoms. However, our complete understanding of optimizing in vivo delivery and dosing of BA is still in its infancy. Thus, this review will clarify our current knowledge of BA supplementation to augment muscle carnosine as well as highlight future research questions on the regulatory points of control for muscle carnosine synthesis.
Resumo:
Although the placement of dental and orthopedic implants is now generally a safe, reliable and successful undertaking, the functional outcome is less assured in patients whose bone-healing capacity is compromised. To enhance peri-implant osteogenesis in these individuals, BMP-2 could be locally administered. However, neither a free suspension nor an implant-adsorbed depot of the agent is capable of triggering sustained bone formation. We hypothesize that this end could be achieved by incorporating BMP-2 into the three-dimensional crystalline latticework of a bone-mineral like, calcium-phosphate implant coating, where from it would be liberated gradually - as the inorganic layer undergoes osteoclast-mediated degradation - not rapidly, as from an implant-adsorbed (two-dimensional) depot. To test this postulate, we compared the osteoinductive efficacies of implant coatings bearing either an incorporated, an adorbed, or an incorporated and an adsorbed depot of BMP-2 at a maxillary site in miniature pigs. The implants were retrieved 1, 2 and 3 weeks after surgery for the histomorphometric analysis of bone formation within a defined 'osteoinductive' space. At each juncture, the volume of newly-formed bone within the osteoinductive space was greatest around implants that bore a coating-incorporated depot of BMP-2, peak osteogenic activity being attained during the first week and sustained thereafter. In the other groups, the temporal course of bone formation was variable, and the peak levels were not sustained. The findings of this study confirm our hypothesis: they demonstrate that we now have at our disposal a means of efficaciously augmenting and expediting peri-implant bone formation. Clinically, this possibility would render the process of implant placement a safer and a more reliable undertaking in patients whose bone-healing capacity is compromised, and would also permit a curtailment of the postoperative recovery period by a forestallment of the mechanical-loading phase.