910 resultados para Deicing chemicals.
Resumo:
Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. A range of chemical species have been associated with particulate matter and of special concern are the hazardous chemicals that can accentuate health problems. If the sources of such particles can be identified then strategies can be developed for the reduction of air pollution and consequently, the improvement of the quality of life. In this investigation, particle number size distribution data and the concentrations of chemical species were obtained at two sites in Brisbane, Australia. Source apportionment was used to determine the sources (or factors) responsible for the particle size distribution data. The apportionment was performed by Positive Matrix Factorisation (PMF) and Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS), and the results were compared with information from the gaseous chemical composition analysis. Although PCA/APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources identified by both methods include: traffic 1, traffic 2, local traffic, biomass burning, and two unassigned factors. Thus motor vehicle related activities had the most impact on the data with the average contribution from nearly all sources to the measured concentrations higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology which utilised a combination of three types of data related to particulate matter to determine the sources could assist future development of particle emission control and reduction strategies.
Resumo:
Monetite is a phosphate mineral formed by the reaction of the chemicals in bat guano with calcite substrates and is commonly found in caves. The analog of the mineral monetite CaHPO4 has been synthesized and the Raman and infrared spectra of the natural monetite originating from the Murra-el-elevyn Cave, Eucla, Western Australia, compared. Monetite is characterized by a complex set of phosphate bands that arise because of two sets of pairs of phosphate units in the unit cell. Raman and infrared bands are assigned to HPO4(2-), OH stretching and bending vibrations. Infrared bands at 1346 and 1402 cm−1 are assigned to POH deformation modes. Vibrational spectroscopy confirms the presence of monetite in the cave system.
Resumo:
The males of many Bactrocera species (Diptera: Tephritidae) respond strongly and positively to a small number of plant-derived chemicals (=male lures). Males that have imbibed the lures commonly have a mating advantage over unfed males, but no female benefits have been demonstrated for females mating with lure-fed males. It has been hypothesized that the strong lure response is a case of runaway selection, where males receive direct benefits and females receive indirect benefits via 'sexy sons', or a case of sensory bias where females have a lower threshold response to lures. To test these hypotheses we studied the effects of lure feeding on male mating, remating and longevity; while for females that had mated with lure-fed males we recorded mating refractoriness, fecundity, egg viability and longevity. We used Bactrocera tryoni as our test animal and as lures the naturally occurring zingerone and chemically related, but synthetic chemical cuelure. Feeding on lures provided direct male benefits in greater mating success and increased multiple mating. For the first time, we recorded direct female effects: increased fecundity and reduced remating receptivity. Egg viability did not differ in females mated with lure-fed or unfed males. The life span of males and females exposed to lures was reduced. These results reveal direct, current-generation fitness benefits for both males and females, although the male benefits appear greater. We discuss that while lure response is indeed likely to be a sexual selection trait, there is no need to invoke runaway selection to explain its evolution.
Resumo:
Fruit flies are the insects which cause maggots in your backyard fruit and vegetables. They are not just a nuisance to gardeners, but the single greatest insect threat to commercial and subsistence fruit growers throughout Asia, Australia and the Pacific. Queensland fruit fly, the focus of this PhD, costs Australia an estimated $100million per year. I focused specifically on how Queensland fruit fly uses different commercial citrus varieties. I identified specific plant related mechanisms which increase a fruit’s resistance to fruit fly attack. This information can be used by plant breeders to make fruit less prone to fruit fly damage.
Resumo:
Purpose: Matrix metalloproteinases (MMPs) degrade extracellular proteins and facilitate tumor growth, invasion, metastasis, and angiogenesis. This trial was undertaken to determine the effect of prinomastat, an inhibitor of selected MMPs, on the survival of patients with advanced non-small-cell lung cancer (NSCLC), when given in combination with gemcitabine-cisplatin chemotherapy. Patients and Methods: Chemotherapy-naive patients were randomly assigned to receive prinomastat 15 mg or placebo twice daily orally continuously, in combination with gemcitabine 1,250 mg/m2 days 1 and 8 plus cisplatin 75 mg/m2 day 1, every 21 days for up to six cycles. The planned sample size was 420 patients. Results: Study results at an interim analysis and lack of efficacy in another phase III trial prompted early closure of this study. There were 362 patients randomized (181 on prinomastat and 181 on placebo). One hundred thirty-four patients had stage IIIB disease with T4 primary tumor, 193 had stage IV disease, and 34 had recurrent disease (one enrolled patient was ineligible with stage IIIA disease). Overall response rates for the two treatment arms were similar (27% for prinomastat v 26% for placebo; P = .81). There was no difference in overall survival or time to progression; for prinomastat versus placebo patients, the median overall survival times were 11.5 versus 10.8 months (P = .82), 1-year survival rates were 43% v 38% (P = .45), and progression-free survival times were 6.1 v 5.5 months (P = .11), respectively. The toxicities of prinomastat were arthralgia, stiffness, and joint swelling. Treatment interruption was required in 38% of prinomastat patients and 12% of placebo patients. Conclusion: Prinomastat does not improve the outcome of chemotherapy in advanced NSCLC. © 2005 by American Society of Clinical Oncology.
Resumo:
Scores of well-researched individual papers and posters specifically or indirectly addressing the occurrence, measurement or exposure impacts of chemicals in buildings were presented at 2012 Healthy Buildings Conference. Many of these presentations offered advances in sampling and characterisation of chemical pollutants while others extended the frontiers of knowledge on the emission, adsorption, risk, fate and compositional levels of chemicals in indoor and outdoor microenvironments. Several modelled or monitored indoor chemistry, including processes that generated secondary pollutants. This article provides an overview of the state of knowledge on healthy buildings based on papers presented in chemistry sessions at Healthy Buildings 2012 (HB2012) Conference. It also suggests future directions in healthy buildings research.
Resumo:
The anticonvulsant phenytoin (5,5-diphenylhydantoin) provokes a skin rash in 5 to 10% of patients, which heralds the start of an idiosyncratic reaction that may result from covalent modification of normal self proteins by reactive drug metabolites. Phenytoin is metabolized by cytochrome P450 (P450) enzymes primarily to 5-(p-hydroxyphenyl-),5-phenylhydantoin (HPPH), which may be further metabolized to a catechol that spontaneously oxidizes to semiquinone and quinone species that covalently modify proteins. The aim of this study was to determine which P450s catalyze HPPH metabolism to the catechol, proposed to be the final enzymatic step in phenytoin bioactivation. Recombinant human P450s were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Novel bicistronic expression vectors were constructed for P450 2C19 and the three major variants of P450 2C9, i.e., 2C9*1, 2C9*2, and 2C9*3. HPPH metabolism and covalent adduct formation were assessed in parallel. P450 2C19 was the most effective catalyst of HPPH oxidation to the catechol metabolite and was also associated with the highest levels of covalent adduct formation. P450 3A4, 3A5, 3A7, 2C9*1, and 2C9*2 also catalyzed bioactivation of HPPH, but to a lesser extent. Fluorographic analysis showed that the major targets of adduct formation in bacterial membranes were the catalytic P450 forms, as suggested from experiments with human liver microsomes. These results suggest that P450 2C19 and other forms from the 2C and 3A subfamilies may be targets as well as catalysts of drug-protein adduct formation from phenytoin.
Resumo:
Most persistent organic pollutants (POPs) like polychlorinated biphenyls (PCBs), a range of polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) are readily absorbed (via the ingestion and inhalation) and accumulate in fatty tissue, including adipose tissue and human milk [1]. Health effects related to exposure to these chemicals may include neurological effects, altered functioning of the nervous system and/or endocrine disruption [2-4]. The burden of environmental disease is recognized as much higher for children than adults, especially in young children under 5 years of age worldwide [5]. There is increased concern regarding the environmental impact on the health of children who have been disproportionately affected by environmental problems. For example they may be subjected to relatively higher exposure, have greater physiological susceptibility and/or suffer more extreme consequences due to growth [6-9]. It is therefore worthwhile to assess the correlation between burden of disease and exposure to xenobiotic chemical pollutants like POPs. Such assessment may provide guidance for legislative changes regarding chemical bans and give reliable advice to parents including lactating mothers.
Resumo:
This thesis is a comprehensive study of plasmonic gold photocatalysts for organic conversions. It presents the advantages of plasmonic gold photocatalysts in the selective oxidation, reduction, and acetalisation. It is discovered that plasmonic gold photocatalysts exhibit better catalytic performance (higher selectivity or activity) in these organic conversions. The study in this thesis highlights the capacity of plasmonic gold photocatalysts in harvesting solar energy for converting organic raw materials to value-added chemicals, and the great potential of gold photocatalysts in chemical production.
Resumo:
Sugarcane products represent an abundant and relatively low cost carbon resource that can be utilised to produce chemical intermediates such as levulinic acid and furanics. These chemicals can be easily upgraded to commodity and specialty chemicals and biofuels by high yielding and well established technologies. However, there are challenges and technical hurdles that need to be overcome before these chemical intermediates can be cost-effectively produced in commercial quantities. The paper reviews production of levulinic acid and furanics from sugars by homogeneous mineral acid catalysts, and reports on preliminary studies on the production of these compounds with environmentally friendly biodegradable sulfonic acids. The yields (>50% of theoretical) of levulinic acid, formic acid and furfural obtained with these organic acids are comparable to that of sulphuric acid currently used for their production.
Resumo:
Environmental degradation is a worldwide phenomenon. It is manifested in the clearing of forests, polluted waterways, soil erosion, the loss of biodiversity, the presence of chemicals in the ecosystem and a host of other concerns. Modern agricultural practices have been implicated in much of this degradation. This chapter explores the connections between the form of agricultural production undertaken in advanced nations – so called ‘productivist’ or ‘high-tech’ farming – and environmental degradation. It is argued, first, that the entrenchment of productivist agriculture has placed considerable, and continuing, pressures on the environment and, second, that while there are both new options for a more sustainable agriculture and new policies being proposed to tackle the existing problem, the underlying basis of productivist agriculture remains largely unchallenged. The prediction is that environmental degradation will continue unabated until more dramatic (and possibly less palatable) measures are taken to alter the behaviour of producers and the trajectory of farming and grazing industries throughout the world.
Resumo:
Goethite, one of the most thermodynamically stable iron oxides, has been extensively researched especially the structure (including surface structure), the adsorption capacity to anions, organic/organic acid (especially for the soil organic carbon) and cations in the natural environment and its potential application in environmental protection. For example, the adsorption of heavy metals by goethite can decrease the concentration of heavy metals in aqueous solution and immobilize; the adsorption to soil organic carbon can decrease the release of carbon and fix carbon. In this present overview, the possible physicochemical properties of the goethite surface contributing to the strong affinity of goethite to nutrients and contaminants in natural environment are reported. Moreover, these chemicals adsorbed by goethite were also summarized and the suggested adsorption mechanism for these adsorbates was elucidated, which will help us understand the role of goethite in natural environment and provide some information about goethite as an absorbent. In addition, the feasibility of goethite used as catalyst carrier and the precursor of NZVI was proposed for removal of environmental pollution.
Resumo:
Perflurooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been used for a variety of applications including fluoropolymer processing, fire-fighting foams and surface treatments since the 1950s. Both PFOS and PFOA are polyfluoroalkyl chemicals (PFCs), man-made compounds that are persistent in the environment and humans; some PFCs have shown adverse effects in laboratory animals. Here we describe the application of a simple one compartment pharmacokinetic model to estimate total intakes of PFOA and PFOS for the general population of urban areas on the east coast of Australia. Key parameters for this model include the elimination rate constants and the volume of distribution within the body. A volume of distribution was calibrated for PFOA to a value of 170ml/kgbw using data from two communities in the United States where the residents' serum concentrations could be assumed to result primarily from a known and characterized source, drinking water contaminated with PFOA by a single fluoropolymer manufacturing facility. For PFOS, a value of 230ml/kgbw was used, based on adjustment of the PFOA value. Applying measured Australian serum data to the model gave mean+/-standard deviation intake estimates of PFOA of 1.6+/-0.3ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003 and 1.3+/-0.2ng/kg bw/day based on samples collected in 2006-2007. Mean intakes of PFOS were 2.7+/-0.5ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003, and 2.4+/-0.5ng/kgbw/day for the 2006-2007 samples. ANOVA analysis was run for PFOA intake and demonstrated significant differences by age group (p=0.03), sex (p=0.001) and date of collection (p<0.001). Estimated intake rates were highest in those aged >60years, higher in males compared to females, and higher in 2002-2003 compared to 2006-2007. The same results were seen for PFOS intake with significant differences by age group (p<0.001), sex (p=0.001) and date of collection (p=0.016).
Resumo:
There are many attractive alternatives to produce chemicals similar to those currently produced from fossil fuel resources. The most viable renewable resource of fixed carbon is biomass. This paper examines processing conditions for the production and recovery of furanics from bagasse as well as bagasse pulp. It is shown that bio-oil consisting mainly of furanics (~84% chloromethly furfural) may be obtained in yields of ~78% and ~87% by weight from bagasse and bagasse pulp respectively using a biphasic acid hydrolysis system. The biphasic system consists of an organic layer of dichloroethane and an aqueous phase of concentrated hydrochloric acid. Generally the lower the impurity content and the higher the cellulose content, the higher the furanics yield.