958 resultados para Deformed defect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detailed study of the deterioration suffered by the materials of the components of a nuclear facility, in particular those forming part of the reactor core, is a topic of great interest which importance derives in large technological and economic implications. Since changes in the atomic-structural properties of relevant components pose a risk to the smooth operation with clear consequences for security and life of the plant, controlling these factors is essential in any development of engineering design and implementation. In recent times, tungsten has been proposed as a structural material based on its good resistance to radiation, but still needs to be done an extensive study on the influence of temperature on the behavior of this material under radiation damage. This work aims to contribute in this regard. Molecular Dynamics (MD) simulations were carried out to determine the influence of temperature fluctuations on radiation damage production and evolution in Tungsten. We have particularly focused our study in the dynamics of defect creation, recombination, and diffusion properties. PKA energies were sampled in a range from 5 to 50 KeV. Three different temperature scenarios were analyzed, from very low temperatures (0-200K), up to high temperature conditions (300-500 K). We studied the creation of defects, vacancies and interstitials, recombination rates, diffusion properties, cluster formation, their size and evolution. Simulations were performed using Lammps and the Zhou EAM potential for W

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most empirical disciplines promote the reuse and sharing of datasets, as it leads to greater possibility of replication. While this is increasingly the case in Empirical Software Engineering, some of the most popular bug-fix datasets are now known to be biased. This raises two significants concerns: first, that sample bias may lead to underperforming prediction models, and second, that the external validity of the studies based on biased datasets may be suspect. This issue has raised considerable consternation in the ESE literature in recent years. However, there is a confounding factor of these datasets that has not been examined carefully: size. Biased datasets are sampling only some of the data that could be sampled, and doing so in a biased fashion; but biased samples could be smaller, or larger. Smaller data sets in general provide less reliable bases for estimating models, and thus could lead to inferior model performance. In this setting, we ask the question, what affects performance more? bias, or size? We conduct a detailed, large-scale meta-analysis, using simulated datasets sampled with bias from a high-quality dataset which is relatively free of bias. Our results suggest that size always matters just as much bias direction, and in fact much more than bias direction when considering information-retrieval measures such as AUC and F-score. This indicates that at least for prediction models, even when dealing with sampling bias, simply finding larger samples can sometimes be sufficient. Our analysis also exposes the complexity of the bias issue, and raises further issues to be explored in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work implements an optimization of the phosphorus gettering effect during the contact co-firing step by means of both simulations and experiments in an industrial belt furnace. An optimized temperature profile, named ‘extended co-firing step’, is presented. Simulations show that the effect of the short annealing on the final interstitial iron concentration depends strongly on the initial contamination level of the material and that the ‘extended co-firing’ temperature profile can enhance the gettering effect within a small additional time. Experimental results using sister wafers from the same multicrystalline silicon ingot confirm these trends and show the potential of this new defect engineering tool to improve the solar cell efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the stability and dynamics of non-Boussinesq convection in pure gases ?CO2 and SF6? with Prandtl numbers near Pr? 1 and in a H2-Xe mixture with Pr= 0.17. Focusing on the strongly nonlinear regime we employ Galerkin stability analyses and direct numerical simulations of the Navier-Stokes equations. For Pr ? 1 and intermediate non-Boussinesq effects we find reentrance of stable hexagons as the Rayleigh number is increased. For stronger non-Boussinesq effects the usual, transverse side-band instability is superseded by a longitudinal side-band instability. Moreover, the hexagons do not exhibit any amplitude instability to rolls. Seemingly, this result contradicts the experimentally observed transition from hexagons to rolls. We resolve this discrepancy by including the effect of the lateral walls. Non-Boussinesq effects modify the spiral defect chaos observed for larger Rayleigh numbers. For convection in SF6 we find that non-Boussinesq effects strongly increase the number of small, compact convection cells and with it enhance the cellular character of the patterns. In H2-Xe, closer to threshold, we find instead an enhanced tendency toward roll-like structures. In both cases the number of spirals and of targetlike components is reduced. We quantify these effects using recently developed diagnostics of the geometric properties of the patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- Bénard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we introduce the Object Kinetic Monte Carlo (OKMC) simulator MMonCa and simulate the defect evolution in three different materials. We start by explaining the theory of OKMC and showing some details of how such theory is implemented by creating generic structures and algorithms in the objects that we want to simulate. Then we successfully reproduce simulated results for defect evolution in iron, silicon and tungsten using our simulator and compare with available experimental data and similar simulations. The comparisons validate MMonCa showing that it is powerful and flexible enough to be customized and used to study the damage evolution of defects in a wide range of solid materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The era of the seed-cast grown monocrystalline-based silicon ingots is coming. Mono-like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost, high productivity and full square-shape that characterize the well-known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation and damage mechanisms of carbon fiber-reinforced epoxy laminates deformed in shear were studied by means of X-ray computed tomography. In particular, the evolution of matrix cracking, interply delamination and fiber rotation was ascertained as a function of the applied strain. In order to provide quantitative information, an algorithm was developed to automatically determine the crack density and the fiber orientation from the tomograms. The investigation provided new insights about the complex interaction between the different damage mechanisms (i.e. matrix cracking and interply delamination) as a function of the applied strain, ply thickness and ply location within the laminate as well as quantitative data about the evolution of matrix cracking and fiber rotation during deformation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tangier disease is characterized by low serum high density lipoproteins and a biochemical defect in the cellular efflux of lipids to high density lipoproteins. ABC1, a member of the ATP-binding cassette family, recently has been identified as the defective gene in Tangier disease. We report here the organization of the human ABC1 gene and the identification of a mutation in the ABC1 gene from the original Tangier disease kindred. The organization of the human ABC1 gene is similar to that of the mouse ABC1 gene and other related ABC genes. The ABC1 gene contains 49 exons that range in size from 33 to 249 bp and is over 70 kb in length. Sequence analysis of the ABC1 gene revealed that the proband for Tangier disease was homozygous for a deletion of nucleotides 3283 and 3284 (TC) in exon 22. The deletion results in a frameshift mutation and a premature stop codon starting at nucleotide 3375. The product is predicted to encode a nonfunctional protein of 1,084 aa, which is approximately half the size of the full-length ABC1 protein. The loss of a Mnl1 restriction site, which results from the deletion, was used to establish the genotype of the rest of the kindred. In summary, we report on the genomic organization of the human ABC1 gene and identify a frameshift mutation in the ABC1 gene of the index case of Tangier disease. These results will be useful in the future characterization of the structure and function of the ABC1 gene and the analysis of additional ABC1 mutations in patients with Tangier disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G proteins play a major role in signal transduction upon platelet activation. We have previously reported a patient with impaired agonist-induced aggregation, secretion, arachidonate release, and Ca2+ mobilization. Present studies demonstrated that platelet phospholipase A2 (cytosolic and membrane) activity in the patient was normal. Receptor-mediated activation of glycoprotein (GP) IIb-IIIa complex measured by flow cytometry using antibody PAC-1 was diminished despite normal amounts of GPIIb-IIIa on platelets. Ca2+ release induced by guanosine 5′-[γ-thio]triphosphate (GTP[γS]) was diminished in the patient’s platelets, suggesting a defect distal to agonist receptors. GTPase activity (a function of α-subunit) in platelet membranes was normal in resting state but was diminished compared with normal subjects on stimulation with thrombin, platelet-activating factor, or the thromboxane A2 analog U46619. Binding of 35S-labeled GTP[γS] to platelet membranes was decreased under both basal and thrombin-stimulated states. Iloprost (a stable prostaglandin I2 analog) -induced rise in cAMP (mediated by Gαs) and its inhibition (mediated by Gαi) by thrombin in the patient’s platelet membranes were normal. Immunoblot analysis of Gα subunits in the patient’s platelet membranes showed a decrease in Gαq (<50%) but not Gαi, Gαz, Gα12, and Gα13. These studies provide evidence for a hitherto undescribed defect in human platelet G-protein α-subunit function leading to impaired platelet responses, and they provide further evidence for a major role of Gαq in thrombin-induced responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgments The authors would like to thank EPSRC (EP/ K018345/1) and Royal Society-NSFC International Exchange Scheme for providing financial support to this research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila shibire and its mammalian homologue dynamin regulate an early step in endocytosis. We identified a Caenorhabditis elegans dynamin gene, dyn-1, based upon hybridization to the Drosophila gene. The dyn-1 RNA transcripts are trans-spliced to the spliced leader 1 and undergo alternative splicing to code for either an 830- or 838-amino acid protein. These dyn-1 proteins are highly similar in amino acid sequence, structure, and size to the Drosophila and mammalian dynamins: they contain an N-terminal GTPase, a pleckstrin homology domain, and a C-terminal proline-rich domain. We isolated a recessive temperature-sensitive dyn-1 mutant containing an alteration within the GTPase domain that becomes uncoordinated when shifted to high temperature and that recovers when returned to lower temperatures, similar to D. shibire mutants. When maintained at higher temperatures, dyn-1 mutants become constipated, egg-laying defective, and produce progeny that die during embryogenesis. Using a dyn-1::lacZ gene fusion, a high level of dynamin expression was observed in motor neurons, intestine, and pharyngeal muscle. Our results suggest that dyn-1 function is required during development and for normal locomotion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common Variable Immuno-Deficiency (CVID) is the most common symptomatic primary antibody-deficiency syndrome, but the basic immunologic defects underlying this syndrome are not well defined. We report here that among eight patients studied (six CVID and two hypogammaglobulinemic patients with recurrent infections), there is in two CVID patients a dramatic reduction in Ig V gene somatic hypermutation with 40–75% of IgG transcripts totally devoid of mutations in the circulating memory B cell compartment. Functional assays of the T cell compartment point to an intrinsic B cell defect in the process of antibody affinity maturation in these two cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type IV pili of Neisseria gonorrhoeae, the Gram-negative etiologic agent of gonorrhea, facilitate colonization of the human host. Gonococcal PilT, a protein belonging to a large family of molecules sharing a highly conserved nucleotide binding domain motif, has been shown to be dispensable for organelle biogenesis but essential for twitching motility and competence for genetic transformation. Here, we show that the defect in pilus biogenesis resulting from mutations in the pilC gene, encoding a putative pilus-associated adhesin for human tissue, can be suppressed by the absence of functional PilT. These data conclusively demonstrate that PilT influences the Type IV pilus biogenesis pathway and strongly suggest that organelle expression is a dynamic process. In addition, these findings imply that PilT antagonizes the process of organelle biogenesis and provide the basis for a model for how the counteractive roles of PilT and PilC might relate mechanistically to the phenomenon of twitching motility.