970 resultados para Deep-sea sharks
Resumo:
The family Munnopsidae was the most abundant and diverse among 22 isopod families collected by the ANDEEP deep-sea expeditions in 2002 and 2005 in the Atlantic sector of the Southern Ocean. A total of 219 species from 31 genera and eight subfamilies were analysed. Only 20% species were known to science, and 11% of these were reported outside the ANDEEP area mainly from other parts of the SO or the South Atlantic deep sea. One hundred and five species (50%) were rare, occurring at only 1 or 2 stations. Seventy-two percent of all munnopsid specimens belong to the most numerous 25 species with a total abundance of more than 75 specimens; 5 of these species (40% of all specimens) belong to the main genera of the world munnopsid fauna, Eurycope, Disconectes, Betamorpha, and Ilyarachna. About half of all munnopsid specimens and 34% of all species belong to the subfamily Eurycopinae, which is followed in occurrence by the Lipomerinae (19%). Munnopsinae is the poorest represented subfamily (1.5%). The composition of the subfamilies for the munnopsid fauna of the ANDEEP area differs from that of northern faunas. Lipomerinae show a lower percentage (7%) in the North Atlantic and are absent in the Arctic and in the North Pacific. This subfamily is considered as young and having a centre of origin and diversification in the Southern Ocean. The analyses of the taxonomic diversity and the distribution of Antarctic munnopsids and the distribution of the world fauna of all genera of the family revealed that species richness and diversity of the genera are highest in the ANDEEP area. The investigated fauna is characterised also by high percentage of endemic species, the highest richness and diversity of the main munnopsid genera and subfamily Lipomerinae. This supports the hypothesis that the Atlantic sector of SO deep sea may be considered as the main contemporary centre of diversification of the Munnopsidae. It might serve as a diversity pump of species of the Munnopsidae to more northern Atlantic areas via the deep water originating in the Weddell Sea.
Resumo:
Pore water and turnover rates were determined for surface sediment cores obtained in 2009 and 2010. The pore water was extracted with Rhizons (Rhizon CSS: length 5 cm, pore diameter 0.15 µm; Rhizosphere Research Products, Wageningen, Netherlands) in 1 cm-resolution and immediately fixed in 5% zinc acetate (ZnAc) solution for sulfate, and sulfide analyses. The samples were diluted, filtered and the concentrations measured with non-suppressed anion exchange chromatography (Waters IC-Pak anion exchange column, waters 430 conductivity detector). The total sulfide concentrations (H2S + HS- + S**2-) were determined using the diamine complexation method (doi:10.4319/lo.1969.14.3.0454). Samples for dissolved inorganic carbon (DIC) and alkalinity measurements were preserved by adding 2 µl saturated mercury chloride (HgCl2) solution and stored headspace-free in gas-tight glass vials. DIC and alkalinity were measured using the flow injection method (detector VWR scientific model 1054) (doi:10.4319/lo.1992.37.5.1113). Dissolved sulfide was eliminated prior to the DIC measurement by adding 0.5 M molybdate solution (doi:10.4319/lo.1995.40.5.1011). Nutrient subsamples (10 - 15 ml) were stored at - 20 °C prior to concentration measurements with a Skalar Continuous-Flow Analyzer (doi:10.1002/9783527613984).
Resumo:
Turnover rates were determined for surface sediment cores obtained in 2009 and 2010. Sulfate reduction (SR) were measured ex situ by the whole core injection method (doi:10.1080/01490457809377722). We incubated the samples at in situ temperature (1.0°C) for 12 hours with carrier-free 35**SO4 (dissolved in water, 50 kBq). Sediment was fixed in 20 ml 20% ZnAc solution for AOM or SR, respectively. Turnover rates were measured as previously described (doi:10.4319/lom.2004.2.171).