958 resultados para Data frequency
Resumo:
The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed. The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes. The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.
Resumo:
Sub-seasonal variability including equatorial waves significantly influence the dehydration and transport processes in the tropical tropopause layer (TTL). This study investigates the wave activity in the TTL in 7 reanalysis data sets (RAs; NCEP1, NCEP2, ERA40, ERA-Interim, JRA25, MERRA, and CFSR) and 4 chemistry climate models (CCMs; CCSRNIES, CMAM, MRI, and WACCM) using the zonal wave number-frequency spectral analysis method with equatorially symmetric-antisymmetric decomposition. Analyses are made for temperature and horizontal winds at 100 hPa in the RAs and CCMs and for outgoing longwave radiation (OLR), which is a proxy for convective activity that generates tropopause-level disturbances, in satellite data and the CCMs. Particular focus is placed on equatorial Kelvin waves, mixed Rossby-gravity (MRG) waves, and the Madden-Julian Oscillation (MJO). The wave activity is defined as the variance, i.e., the power spectral density integrated in a particular zonal wave number-frequency region. It is found that the TTL wave activities show significant difference among the RAs, ranging from ∼0.7 (for NCEP1 and NCEP2) to ∼1.4 (for ERA-Interim, MERRA, and CFSR) with respect to the averages from the RAs. The TTL activities in the CCMs lie generally within the range of those in the RAs, with a few exceptions. However, the spectral features in OLR for all the CCMs are very different from those in the observations, and the OLR wave activities are too low for CCSRNIES, CMAM, and MRI. It is concluded that the broad range of wave activity found in the different RAs decreases our confidence in their validity and in particular their value for validation of CCM performance in the TTL, thereby limiting our quantitative understanding of the dehydration and transport processes in the TTL.
Resumo:
The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.
Resumo:
This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly), using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.
Resumo:
This paper presents and implements a number of tests for non-linear dependence and a test for chaos using transactions prices on three LIFFE futures contracts: the Short Sterling interest rate contract, the Long Gilt government bond contract, and the FTSE 100 stock index futures contract. While previous studies of high frequency futures market data use only those transactions which involve a price change, we use all of the transaction prices on these contracts whether they involve a price change or not. Our results indicate irrefutable evidence of non-linearity in two of the three contracts, although we find no evidence of a chaotic process in any of the series. We are also able to provide some indications of the effect of the duration of the trading day on the degree of non-linearity of the underlying contract. The trading day for the Long Gilt contract was extended in August 1994, and prior to this date there is no evidence of any structure in the return series. However, after the extension of the trading day we do find evidence of a non-linear return structure.
Resumo:
Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.
Resumo:
Background: Dietary assessment methods are important tools for nutrition research. Online dietary assessment tools have the potential to become invaluable methods of assessing dietary intake because, compared with traditional methods, they have many advantages including the automatic storage of input data and the immediate generation of nutritional outputs. Objective: The aim of this study was to develop an online food frequency questionnaire (FFQ) for dietary data collection in the “Food4Me” study and to compare this with the validated European Prospective Investigation of Cancer (EPIC) Norfolk printed FFQ. Methods: The Food4Me FFQ used in this analysis was developed to consist of 157 food items. Standardized color photographs were incorporated in the development of the Food4Me FFQ to facilitate accurate quantification of the portion size of each food item. Participants were recruited in two centers (Dublin, Ireland and Reading, United Kingdom) and each received the online Food4Me FFQ and the printed EPIC-Norfolk FFQ in random order. Participants completed the Food4Me FFQ online and, for most food items, participants were requested to choose their usual serving size among seven possibilities from a range of portion size pictures. The level of agreement between the two methods was evaluated for both nutrient and food group intakes using the Bland and Altman method and classification into quartiles of daily intake. Correlations were calculated for nutrient and food group intakes. Results: A total of 113 participants were recruited with a mean age of 30 (SD 10) years (40.7% male, 46/113; 59.3%, 67/113 female). Cross-classification into exact plus adjacent quartiles ranged from 77% to 97% at the nutrient level and 77% to 99% at the food group level. Agreement at the nutrient level was highest for alcohol (97%) and lowest for percent energy from polyunsaturated fatty acids (77%). Crude unadjusted correlations for nutrients ranged between .43 and .86. Agreement at the food group level was highest for “other fruits” (eg, apples, pears, oranges) and lowest for “cakes, pastries, and buns”. For food groups, correlations ranged between .41 and .90. Conclusions: The results demonstrate that the online Food4Me FFQ has good agreement with the validated printed EPIC-Norfolk FFQ for assessing both nutrient and food group intakes, rendering it a useful tool for ranking individuals based on nutrient and food group intakes.
Resumo:
With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.
Resumo:
The total reactive phosphorus (TRP) and nitrate concentrations of the River Enborne, southern England, were monitored at hourly interval between January 2010 and December 2011. The relationships between these high-frequency nutrient concentration signals and flow were used to infer changes in nutrient source and dynamics through the annual cycle and each individual storm event, by studying hysteresis patterns. TRP concentrations exhibited strong dilution patterns with increasing flow, and predominantly clockwise hysteresis through storm events. Despite the Enborne catchment being relatively rural for southern England, TRP inputs were dominated by constant, non-rain-related inputs from sewage treatment works (STW) for the majority of the year, producing the highest phosphorus concentrations through the spring–summer growing season. At higher river flows, the majority of the TRP load was derived from within-channel remobilisation of phosphorus from the bed sediment, much of which was also derived from STW inputs. Therefore, future phosphorus mitigation measures should focus on STW improvements. Agricultural diffuse TRP inputs were only evident during storms in the May of each year, probably relating to manure application to land. The nitrate concentration–flow relationship produced a series of dilution curves, indicating major inputs from groundwater and to a lesser extent STW. Significant diffuse agricultural inputs with anticlockwise hysteresis trajectories were observed during the first major storms of the winter period. The simultaneous investigation of high-frequency time series data, concentration–flow relationships and hysteresis behaviour through multiple storms for both phosphorus and nitrate offers a simple and innovative approach for providing new insights into nutrient sources and dynamics.
Resumo:
ERA-Interim/Land is a global land surface reanalysis data set covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF (European Centre for Medium-Range Weather Forecasts) land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80 km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim data set, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models.
Resumo:
Background: Advances in nutritional assessment are continuing to embrace developments in computer technology. The online Food4Me food frequency questionnaire (FFQ) was created as an electronic system for the collection of nutrient intake data. To ensure its accuracy in assessing both nutrient and food group intake, further validation against data obtained using a reliable, but independent, instrument and assessment of its reproducibility are required. Objective: The aim was to assess the reproducibility and validity of the Food4Me FFQ against a 4-day weighed food record (WFR). Methods: Reproducibility of the Food4Me FFQ was assessed using test-retest methodology by asking participants to complete the FFQ on 2 occasions 4 weeks apart. To assess the validity of the Food4Me FFQ against the 4-day WFR, half the participants were also asked to complete a 4-day WFR 1 week after the first administration of the Food4Me FFQ. Level of agreement between nutrient and food group intakes estimated by the repeated Food4Me FFQ and the Food4Me FFQ and 4-day WFR were evaluated using Bland-Altman methodology and classification into quartiles of daily intake. Crude unadjusted correlation coefficients were also calculated for nutrient and food group intakes. Results: In total, 100 people participated in the assessment of reproducibility (mean age 32, SD 12 years), and 49 of these (mean age 27, SD 8 years) also took part in the assessment of validity. Crude unadjusted correlations for repeated Food4Me FFQ ranged from .65 (vitamin D) to .90 (alcohol). The mean cross-classification into “exact agreement plus adjacent” was 92% for both nutrient and food group intakes, and Bland-Altman plots showed good agreement for energy-adjusted macronutrient intakes. Agreement between the Food4Me FFQ and 4-day WFR varied, with crude unadjusted correlations ranging from .23 (vitamin D) to .65 (protein, % total energy) for nutrient intakes and .11 (soups, sauces and miscellaneous foods) to .73 (yogurts) for food group intake. The mean cross-classification into “exact agreement plus adjacent” was 80% and 78% for nutrient and food group intake, respectively. There were no significant differences between energy intakes estimated using the Food4Me FFQ and 4-day WFR, and Bland-Altman plots showed good agreement for both energy and energy-controlled nutrient intakes. Conclusions: The results demonstrate that the online Food4Me FFQ is reproducible for assessing nutrient and food group intake and has moderate agreement with the 4-day WFR for assessing energy and energy-adjusted nutrient intakes. The Food4Me FFQ is a suitable online tool for assessing dietary intake in healthy adults.
Resumo:
Global controls on month-by-month fractional burnt area (2000–2005) were investigated by fitting a generalised linear model (GLM) to Global Fire Emissions Database (GFED) data, with 11 predictor variables representing vegetation, climate, land use and potential ignition sources. Burnt area is shown to increase with annual net primary production (NPP), number of dry days, maximum temperature, grazing-land area, grass/shrub cover and diurnal temperature range, and to decrease with soil moisture, cropland area and population density. Lightning showed an apparent (weak) negative influence, but this disappeared when pure seasonal-cycle effects were taken into account. The model predicts observed geographic and seasonal patterns, as well as the emergent relationships seen when burnt area is plotted against each variable separately. Unimodal relationships with mean annual temperature and precipitation, population density and gross domestic product (GDP) are reproduced too, and are thus shown to be secondary consequences of correlations between different controls (e.g. high NPP with high precipitation; low NPP with low population density and GDP). These findings have major implications for the design of global fire models, as several assumptions in current models – most notably, the widely assumed dependence of fire frequency on ignition rates – are evidently incorrect.
Resumo:
This paper describes the hydrochemistry of a lowland, urbanised river-system, The Cut in England, using in situ sub-daily sampling. The Cut receives effluent discharges from four major sewage treatment works serving around 190,000 people. These discharges consist largely of treated water, originally abstracted from the River Thames and returned via the water supply network, substantially increasing the natural flow. The hourly water quality data were supplemented by weekly manual sampling with laboratory analysis to check the hourly data and measure further determinands. Mean phosphorus and nitrate concentrations were very high, breaching standards set by EU legislation. Though 56% of the catchment area is agricultural, the hydrochemical dynamics were significantly impacted by effluent discharges which accounted for approximately 50% of the annual P catchment input loads and, on average, 59% of river flow at the monitoring point. Diurnal dissolved oxygen data demonstrated high in-stream productivity. From a comparison of high frequency and conventional monitoring data, it is inferred that much of the primary production was dominated by benthic algae, largely diatoms. Despite the high productivity and nutrient concentrations, the river water did not become anoxic and major phytoplankton blooms were not observed. The strong diurnal and annual variation observed showed that assessments of water quality made under the Water Framework Directive (WFD) are sensitive to the time and season of sampling. It is recommended that specific sampling time windows be specified for each determinand, and that WFD targets should be applied in combination to help identify periods of greatest ecological risk. This article is protected by copyright. All rights reserved.
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
Pervasive healthcare aims to deliver deinstitutionalised healthcare services to patients anytime and anywhere. Pervasive healthcare involves remote data collection through mobile devices and sensor network which the data is usually in large volume, varied formats and high frequency. The nature of big data such as volume, variety, velocity and veracity, together with its analytical capabilities com-plements the delivery of pervasive healthcare. However, there is limited research in intertwining these two domains. Most research focus mainly on the technical context of big data application in the healthcare sector. Little attention has been paid to a strategic role of big data which impacts the quality of healthcare services provision at the organisational level. Therefore, this paper delivers a conceptual view of big data architecture for pervasive healthcare via an intensive literature review to address the aforementioned research problems. This paper provides three major contributions: 1) identifies the research themes of big data and pervasive healthcare, 2) establishes the relationship between research themes, which later composes the big data architecture for pervasive healthcare, and 3) sheds a light on future research, such as semiosis and sense-making, and enables practitioners to implement big data in the pervasive healthcare through the proposed architecture.