934 resultados para Data anonymization and sanitization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides information on the experimental set-up, data collection methods and results to date for the project Large scale modelling of coarse grained beaches, undertaken at the Large Wave Channel (GWK) of FZK in Hannover by an international group of researchers in Spring 2002. The main objective of the experiments was to provide full scale measurements of cross-shore processes on gravel and mixed beaches for the verification and further development of cross-shore numerical models of gravel and mixed sediment beaches. Identical random and regular wave tests were undertaken for a gravel beach and a mixed sand/gravel beach set up in the flume. Measurements included profile development, water surface elevation along the flume, internal pressures in the swash zone, piezometric head levels within the beach, run-up, flow velocities in the surf-zone and sediment size distributions. The purpose of the paper is to present to the scientific community the experimental procedure, a summary of the data collected, some initial results, as well as a brief outline of the on-going research being carried out with the data by different research groups. The experimental data is available to all the scientific community following submission of a statement of objectives, specification of data requirements and an agreement to abide with the GWK and EU protocols. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the wake of findings from the Bundaberg Hospital and Forster inquiries in Queensland, periodic public release of hospital performance reports has been recommended. A process for developing and releasing such reports is being established by Queensland Health, overseen by an independent expert panel. This recommendation presupposes that public reports based on routinely collected administrative data are accurate; that the public can access, correctly interpret and act upon report contents; that reports motivate hospital clinicians and managers to improve quality of care; and that there are no unintended adverse effects of public reporting. Available research suggests that primary data sources are often inaccurate and incomplete, that reports have low predictive value in detecting outlier hospitals, and that users experience difficulty in accessing and interpreting reports and tend to distrust their findings.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete workflow specification requires careful integration of many different process characteristics. Decisions must be made as to the definitions of individual activities, their scope, the order of execution that maintains the overall business process logic, the rules governing the discipline of work list scheduling to performers, identification of time constraints and more. The goal of this paper is to address an important issue in workflows modelling and specification, which is data flow, its modelling, specification and validation. Researchers have neglected this dimension of process analysis for some time, mainly focussing on structural considerations with limited verification checks. In this paper, we identify and justify the importance of data modelling in overall workflows specification and verification. We illustrate and define several potential data flow problems that, if not detected prior to workflow deployment may prevent the process from correct execution, execute process on inconsistent data or even lead to process suspension. A discussion on essential requirements of the workflow data model in order to support data validation is also given..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.