978 resultados para DNA-Binding Proteins -- biosynthesis
Resumo:
The role of colostrum and milk in the neonate has been chiefly recognized as a comprehensive nutrient foodstuff. In addition, the provision of colostrum-the first milk-for early immune capacity has been well documented for several species. Colostrum is additionally a rich and concentrated source of various factors that demonstrate biological activity in vitro. Three hypotheses have been proposed for the phenotypic function of these secreted bioactive components: (1) only mammary disposal, (2) mammary cell regulation, and (3) neonatal function [gastrointestinal tract (GIT) or systemic]. Traditionally, it was assumed that the development of the GIT is preprogrammed and not influenced by events occurring in the intestinal lumen. However, a large volume of research has demonstrated that colostrum (or milk-borne) bioactive components can basically contribute to the regulation of GIT growth and differentiation, while their role in postnatal development at physiological concentrations has remained elusive. Much of our current understanding is derived from cell culture and laboratory animals, but experimentation with agriculturally important species is taking place. This chapter provides an overview of work conducted primarily in neonatal calves and secondarily in other species on the effects on neonates of selected peptide endocrine factors (hormones, growth factors, in part cytokines) in colostrum. The primary focus will be on insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) and other bioactive peptides, but new interest and concern about steroids (especially estrogens) in milk are considered as well.
Resumo:
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2 catalyze the interconversion of inactive and active glucocorticoids. Impaired regulation of these enzymes has been associated with obesity, diabetes, hypertension, and cardiovascular disease. Previous studies in animals and humans suggested that dehydroepiandrosterone (DHEA) has antiglucocorticoid effects, but the underlying mechanisms are unknown. In this study, DHEA treatment markedly increased mRNA expression and activity of 11beta-HSD2 in a rat cortical collecting duct cell line and in kidneys of C57BL/6J mice and Sprague-Dawley rats. DHEA-treated rats tended to have reduced urinary corticosterone to 11-dehydrocorticosterone ratios. It was found that CCAAT/enhancer-binding protein-alpha (C/EBP-alpha) and C/EBP-beta regulated HSD11B2 transcription and that DHEA likely modulated the transcription of 11beta-HSD2 in a phosphatidylinositol-3 kinase/Akt-dependent manner by increasing C/EBP-beta mRNA and protein expression. Moreover, it is shown that C/EBP-alpha and C/EBP-beta differentially regulate the expression of 11beta-HSD1 and 11beta-HSD2. In conclusion, DHEA induces a shift from 11beta-HSD1 to 11beta-HSD2 expression, increasing conversion from active to inactive glucocorticoids. This provides a possible explanation for the antiglucocorticoid effects of DHEA.
Resumo:
The insulin-like growth factor (IGF) is a major anabolic regulator in articular cartilage. The IGF-binding proteins (IGFBPs) are increased during osteoarthritis (OA), but the function of the later proteins remains unknown. In general, the IGFBPs are pluripotential effectors capable of IGF regulation and of acting on their own to control key cell functions, including survival and proliferation. The independent functions are often associated with their cell location, and therefore this study explores the distribution of IGFBP-2 and IGFBP-3 in articular chondrocytes. Immunohistochemistry was used to localize IGFBP-2 in normal human articular cartilage. Bovine chondrocytes were used for subcellular fractionation (hypotonic cell lysis) under nonreducing conditions and nuclear purification (centrifugation on sucrose cushions). Cell fraction markers and IGFBPs were assayed in the subcellular fractions by Western immunoblot. The IHC results showed association of IGFBP-2 with chondrocytes, but not with the nuclei. Subcellular fractionation of isolated chondrocytes yielded intact nuclei as assessed at the light microscopic level; the nuclear marker histone H1 was exclusively associated with this fraction. More than 90% of the cytoplasmic marker GAPDH and all the detectable IGFBP-2 were in the cytoplasmic fraction. Immunoreactive IGFBP-3 was found in the cytoplasmic and peri-nuclear/nuclear fractions. Chondrocytes contain intracellular IGFBP-2 and IGFBP-3 but only IGFBP-3 is associated with nuclei. This suggests the hypothesis that the actions of these IGFBPs in articular cartilage extend beyond the classic modulation of IGF receptor action.
Resumo:
Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis of horses caused by bites of insects such as Culicoides or Simulium spp. The aim of the present study was to compare the IgE-binding pattern of sera of IBH-affected horses to Culicoides nubeculosus and Simulium vittatum salivary gland extracts (SGE). Individual IgE responses to proteins of S. vittatum and C. nubeculosus SGEs were evaluated in 15 IBH-affected and three healthy horses on immunoblots. Fourteen out of the 15 IBH-affected but none of the healthy horses showed individual IgE binding patterns to seven and six main protein bands in C. nubeculosus and S. vittatum SGE, respectively. These 14 sera showed IgE-binding to proteins from SGE of both C. nubeculosus and S. vittatum, but they reacted with fewer protein bands derived from S. vittatum than from C. nubeculosus SGE. Sera showing IgE-binding to a 32 kDa band from C. nubeculosus always bound to a 32 kDa band from S. vittatum. Similarly, all sera binding to a 70 kDa band from C. nubeculosus reacted with a corresponding band in S. vittatum SGE. The 70 kDa bands from S. vittatum and C. nubeculosus were identified by mass spectrometry as heat shock protein-70-cognate-3.
Resumo:
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides and sometimes Simulium spp. The aim of this investigation was to identify Simulium allergens associated with IBH. A phage surface display cDNA library expressing recombinant Simulium vittatum salivary gland proteins was screened using sera of IBH-affected horses sensitized to S. vittatum salivary gland proteins as shown in immunoblot, resulting in the identification of seven cDNAs encoding IgE-binding proteins. The deduced amino acid sequences of these proteins showed sequence similarities to antigen 5 like protein (Sim v 1), to a serine protease inhibitor (Sim v 2), to two alpha-amylases (Sim v 3 and Sim v 4), and to three S. vittatum erythema proteins (SVEPs). The cDNA inserts were subcloned and expressed as [His](6)-tagged protein in Escherichia coli and purified using Ni(2+)-chelate affinity chromatography. Mice were immunised with the seven recombinant proteins and the antibodies tested against the recombinant proteins and salivary gland extract (SGE) of S. vittatum and Culicoides nubeculosus in immunoblot analyses. r-Sim v 1 specific mouse Abs recognized a band of about 32 kDa in immunoblots of both S. vittatum and C. nubeculosus SGE, detectable also by serum IgE of IBH-affected horses. Preincubation of horse serum with r-Sim v 1 completely inhibited IgE binding to the 32 kDa band demonstrating the presence of cross-reactive antigen 5 like proteins in both SGE. Determination of IgE levels against the r-Sim v proteins and crude S. vittatum extract by ELISA in sera from 25 IBH-affected and 20 control horses showed that IBH-affected horses had significantly higher IgE levels than controls against r-Sim v 1, 2, 3, 4 and S. vittatum extract, whereas the r-SVEP showed only marginal IgE binding. Further analyses showed that 60% of IBH-affected horses reacted to r-Sim v 1, suggesting that this could be a major allergen for IBH. Forty to twenty percent of the IBH-affected horses reacted with r-Sim v 2, 3 or 4. Combination of the results obtained with the 4 r-Sim v proteins showed that 92% of the IBH-affected but only 15% of the healthy horses had IgE levels against one or more of the 4 r-Sim v proteins. Seventy percent of the healthy horses had detectable IgE against S. vittatum extract, indicating a low specificity of the detection system used. Optimization of the ELISA system will be required to determine reliable cut-off values for the IBH-related allergens. Their in vivo relevance needs to be carefully assessed.
Resumo:
Mesenchymal stromal cells (MSCs) have a multilineage differentiation potential and provide immunosuppressive and antimicrobial functions. Murine as well as human MSCs restrict the proliferation of T cells. However, species-specific differences in the underlying molecular mechanisms have been described. Here, we analyzed the antiparasitic effector mechanisms active in murine MSCs. Murine MSCs, in contrast to human MSCs, could not restrict the growth of a highly virulent strain of Toxoplasma gondii (BK) after stimulation with IFN-γ. However, the growth of a type II strain of T. gondii (ME49) was strongly inhibited by IFN-γ-activated murine MSCs. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Further analysis showed that IFN-γ-activated mMSCs also inhibit the growth of Neospora caninum, a parasite belonging to the apicomplexan group as well. Detailed studies with murine IFN-γ-activated MSC indicated an involvement in IRGs like Irga6, Irgb6 and Irgd in the inhibition of N. caninum. Additional data showed that, furthermore, GBPs like mGBP1 and mGBP2 could have played a role in the anti-N. caninum effect of murine MSCs. These data underline that MSCs, in addition to their regenerative and immunosuppressive activity, function as antiparasitic effector cells as well. However, IRGs are not present in the human genome, indicating a species-specific difference in anti-T. gondii and anti-N. caninum effect between human and murine MSCs.
Resumo:
Hundreds of genes show aberrant DNA hypermethylation in cancer, yet little is known about the causes of this hypermethylation. We identified RIL as a frequent methylation target in cancer. In search for factors that influence RIL hypermethylation, we found a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Pyrosequencing of homozygous tumors revealed a 2.1-fold higher methylation for the short alleles (P<0.001). Bisulfite sequencing of cancers heterozygous for RIL showed that the short alleles are 3.1-fold more methylated than the long (P<0.001). The comparison of expression levels between unmethylated long and short EBV-transformed cell lines showed no difference in expression in vivo. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors, a binding that is absent in the short allele. Transient transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on. However, stable transfection of methylation-seeded constructs showed gradually decreasing transcription levels from the short allele with eventual spreading of de novo methylation. In contrast, the long allele showed stable levels of expression over time as measured by luciferase and approximately 2-3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that, in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
Mammalian genomes encode at least 15 distinct DNA polymerases, functioning as specialists in DNA replication, DNA repair, recombination, or bypass of DNA damage. Although the DNA polymerase zeta (polzeta) catalytic subunit REV3L is important in defense against genotoxins, little is known of its biological function. This is because REV3L is essential during embryogenesis, unlike other translesion DNA polymerases. Outstanding questions include whether any adult cells are viable in the absence of polzeta and whether polzeta status influences tumorigenesis. REV3L-deficient cells have properties that could influence the development of neoplasia in opposing ways: markedly reduced damage-induced point mutagenesis and extensive chromosome instability. To answer these questions, Rev3L was conditionally deleted from tissues of adult mice using MMTV-Cre. Loss of REV3L was tolerated in epithelial tissues but not in the hematopoietic lineage. Thymic lymphomas in Tp53(-/-) Rev3L conditional mice occurred with decreased latency and higher incidence. The lymphomas were populated predominantly by Rev3L-null T cells, showing that loss of Rev3L can promote tumorigenesis. Remarkably, the tumors were frequently oligoclonal, consistent with accelerated genetic changes in the absence of Rev3L. Mammary tumors could also arise from Rev3L-deleted cells in both Tp53(+/+) and Tp53(+/-) backgrounds. Mammary tumors in Tp53(+/-) mice deleting Rev3L formed months earlier than mammary tumors in Tp53(+/-) control mice. Prominent preneoplastic changes in glandular tissue adjacent to these tumors occurred only in mice deleting Rev3L and were associated with increased tumor multiplicity. Polzeta is the only specialized DNA polymerase yet identified that inhibits spontaneous tumor development.
Resumo:
Cells must rapidly sense and respond to a wide variety of potentially cytotoxic external stressors to survive in a constantly changing environment. In a search for novel genes required for stress tolerance in Saccharomyces cerevisiae, we identified the uncharacterized open reading frame YER139C as a gene required for growth at 37 degrees C in the presence of the heat shock mimetic formamide. YER139C encodes the closest yeast homolog of the human RPAP2 protein, recently identified as a novel RNA polymerase II (RNAPII)-associated factor. Multiple lines of evidence support a role for this gene family in transcription, prompting us to rename YER139C RTR1 (regulator of transcription). The core RNAPII subunits RPB5, RPB7, and RPB9 were isolated as potent high-copy-number suppressors of the rtr1Delta temperature-sensitive growth phenotype, and deletion of the nonessential subunits RPB4 and RPB9 hypersensitized cells to RTR1 overexpression. Disruption of RTR1 resulted in mycophenolic acid sensitivity and synthetic genetic interactions with a number of genes involved in multiple phases of transcription. Consistently, rtr1Delta cells are defective in inducible transcription from the GAL1 promoter. Rtr1 constitutively shuttles between the cytoplasm and nucleus, where it physically associates with an active RNAPII transcriptional complex. Taken together, our data reveal a role for members of the RTR1/RPAP2 family as regulators of core RNAPII function.
Resumo:
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
We developed a novel combinatorial method termed restriction endonuclease protection selection and amplification (REPSA) to identify consensus binding sites of DNA-binding ligands. REPSA uses a unique enzymatic selection based on the inhibition of cleavage by a type IIS restriction endonuclease, an enzyme that cleaves DNA at a site distal from its recognition sequence. Sequences bound by a ligand are protected from cleavage while unprotected sequences are cleaved. This enzymatic selection occurs in solution under mild conditions and is dependant only on the DNA-binding ability of the ligand. Thus, REPSA is useful for a broad range of ligands including all classes of DNA-binding ligands, weakly binding ligands, mixed populations of ligands, and unknown ligands. Here I describe REPSA and the application of this method to select the consensus DNA-binding sequences of three representative DNA-binding ligands; a nucleic acid (triplex-forming single-stranded DNA), a protein (the TATA-binding protein), and a small molecule (Distamycin A). These studies generated new information regarding the specificity of these ligands in addition to establishing their DNA-binding sequences. ^
Resumo:
Objective Albeit clear advances in the treatment of SLE, many patients still present with refractory lupus nephritis requiring new treatment strategies for this disease. Here we determined whether reduced doses of the topoisomerase I inhibitor irinotecan, which is known as chemotherapeutic agent, were able to suppress SLE in NZB/W F1 mice. We further evaluated the potential mechanism how irinotecan influenced the course of SLE. Methods NZB/W F1 mice were treated with low dose irinotecan either from week 24 of age or from established glomerulonephritis defined by a proteinuria ≥grade 3+. Binding of anti-dsDNA antibodies was measured by ELISA; and DNA relaxation was visualized by gel electrophoresis. Results Significantly reduced irinotecan dosages improved lupus nephritis and prolonged survival in NZB/W F1 mice. The lowest dose successfully used for the treatment of established murine lupus nephritis was more than 50 times lower than the dose usually applied for chemotherapy in humans. As a mechanism, low dose irinotecan reduced B cell activity; however, the levels of B cell activity in irinotecan-treated mice were similar to those in Balb/c mice of the same age suggesting that irinotecan did not induce a clear immunosuppression. In addition, incubation of double-stranded (ds) DNA with topoisomerase I increased binding of murine and human anti-dsDNA antibodies showing for the first time that relaxed DNA is more susceptible to anti-dsDNA antibody binding. This effect was reversed by addition of the topoisomerase I inhibitor camptothecin. Conclusion Our results propose topoisomerase I inhibitors as a novel and targeted therapy for SLE. © 2014 American College of Rheumatology.