969 resultados para DECREASES ARTERIAL-PRESSURE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a key role in body temperature (Tb) regulation of mammals, acting on the brain to stimulate heat loss. Regarding birds, the putative participation of NO in the maintenance of Tb in thermoneutrality or during heat stress and the site of its action (periphery or brain) is unknown. Thus, we tested if NO participates in the maintenance of chicks` Tb in those conditions. We investigated the effect of intramuscular (im; 25, 50, 100 mg/kg) or intracerebroventricular (icv; 22.5, 45, 90, 180 mu g/animal) injections of the non selective NO synthase inhibitor L-NAME on Tb of 5-day-old chicks at thermoneutral zone (TNZ; 31-32 degrees C) and under heat stress (37 degrees C for 5-6 h). We also verified plasma and diencephalic nitrite/nitrate levels in non-injected chicks under both conditions. At TNZ, 100 mg/kg (im) or 45,90,180 mu g (icv) of L-NAME decreased Tb. A significant correlation between Tb and diencephalic, but not plasma, nitrite/nitrate levels was observed. Heat stress-induced hyperthermia was inhibited by all tested doses of L-NAME (im and icv). Tb was correlated neither with plasma nor with diencephalic nitrite/nitrate levels during heat stress. These results indicate the involvement of brain NO in the maintenance of Tb of chicks, an opposite action of that observed in mammals, and may modulate hyperthermia. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Baroreflex sensitivity is disturbed in many people with cardiovascular diseases such as hypertension. Brain deficiency of nitric oxide (NO), which is synthesized by NO synthase (NOS) in the citrulline-NO cycle (with argininosuccinate synthase (ASS) activity being the rate-limiting step), contributes to impaired baroreflex. We recently showed that a decapeptide isolated from Bothrops jararaca snake venom, denoted Bj-PRO-10c, exerts powerful and sustained antihypertensive activity. Bj-PRO-10c promoted vasodilatation dependent on the positive modulation of ASS activity and NO production in the endothelium, and also acted on the central nervous system, inducing the release of GABA and glutamate, two important neurotransmitters in the regulation of autonomic systems. We evaluated baroreflex function using the regression line obtained by the best-fit points of measured heart rate (HR) and mean arterial pressure (MAP) data from spontaneously hypertensive rats (SHRs) treated with Bj-PRO-10c. We also investigated molecular mechanisms involved in this effect, both in vitro and in vivo. Bj-PRO-10c mediated an increase in baroreflex sensitivity and a decrease in MAP and HR. The effects exerted by the peptide include an increase in the gene expression of endothelial NOS and ASS. Bj-PRO-10c-induced NO production depended on intracellular calcium fluxes and the activation of a G(i/o)-protein-coupled metabotropic receptor. Bj-PRO-10c induced NO production and the gene expression of ASS and endothelial NOS in the brains of SHRs, thereby improving baroreflex sensitivity. Bj-PRO-10c may reveal novel approaches for treating diseases with impaired baroreflex function. Hypertension Research (2010) 33, 1283-1288; doi: 10.1038/hr.2010.208

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present investigation was designed to investigate the effect of the diterpene ent-pimara-8(14),15-dien-19-oic acid (pimaradienoic acid, PA) on smooth muscle extracellular Ca2+ influx. To this end, the effect of PA on phenylephrine- and KCI-induced increases in cytosolic calcium concentration ([Ca2+](c)) measured by the variation in the ratio of fluorescence intensities (R340/ 380 nm) of Fura-2, was analysed. Whether bolus injection of PA could induce hypotensive responses in conscious normotensive rats was also evaluated. PA inhibited the contraction induced by phenylephrine (0.03 or 10 mu mol L-1) and KCI (30 or 90 mmol L-1) in endothelium-denuded rat aortic rings in a concentration dependent manner. Pre-treatment with PA (110, 100, 200 mu mol L-) attenuated the contraction induced by CaCl2 (0.5 nmol L(-)1 or 2.5 mmol L-1) in denuded rat aorta exposed to Ca2+- free medium containing phenylephrine (0.1 mu mol L-1) or KCI (30 mmol L-1). Interestingly, the inhibitory effect displayed by PA on CaCl2-induced contraction was more pronounced when KCI was used as the stimulant. Phenylephrine- and KCI-induced increases in (Ca2+,](c) were inhibited by PA. Similarly, verapamil, a Ca2+-channel blocker, also inhibited the increase in [Ca2+](c) induced by either phenylephrine or KCI. Finally, bolus injection of PA (1-15 mg kg(-1)) produced a dose-dependent decrease in mean arterial pressure in conscious normotensive rats. The results provide the first direct evidence that PA reduces vascular contractility by reducing extracellular Ca2+ influx through smooth muscle cellular membrane, a mechanism that could mediate the hypotensive response induced by this diterpene in normotensive rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sinoaortic denervation is characterized by arterial pressure lability, without sustained hypertension. Aortas isolated from rats with sinoaortic denervation present rhythmic contractions. We studied the participation of distinct Ca2+ sources in the maintenance of the oscillations. Three days after the surgeries, aortic rings were placed in an organ chamber, and the incidence of aortas presenting rhythmic contractions was measured. Specific drugs were employed to analyse the participation of the Ca2+ released from the sarcoplasmic reticulum [2-APB (diphenylborinic acid 2-aminoethyl ester), thapsigargin and ryanodine] and external Ca2+ entry [Bay K 8644, verapamil and DMB (dimethylbenzyl amiloride)] on the rhythmic contractions. Additionally, we verified the effects of chloride channel blocker NPPB [5-nitro-2-(3-phenylpropylamino)benzoic acid] on the maintenance of the rhythmic contractions. Under phenylephrine stimulus, sinoaortic-denervated rat aortas exhibited rhythmic contractions in the frequency of 4.5 +/- 0.50 cycles/min. and an amplitude of 0.465 +/- 0.05 g. 2-APB, thapsigargin and ryanodine inhibited the rhythmic contractions. Bay K 8644 increased the oscillations, reaching maximum values with a concentration of 50 nM (18.5 +/- 2.5 cycles/min.). The rhythmic contractions were inhibiting by verapamil and Ca2+-free solution. DMB and NPPB did not alter the oscillations. In conclusion, we observed that aorta isolated from sinoaortic-denervated rats present rhythmic contractions. Moreover, drugs that impaired intracellular Ca2+ release from sarcoplasmic reticulum interrupted the oscillations. The oscillations also depend on the extracellular Ca2+ entry through L-type Ca2+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have described a new compound (trans-[RuCl([15]ane N(4))NO](2+)), which in vitro releases NO by the action of a reducing agent such as catecholamines. We investigated the effect of this NO donor in lowering the mean arterial pressure (MAP) in severe and moderate renal hypertensive 2K-1C rats. MAP was measured before and after intravenous in bolus injection of the compound in conscious 2K-1C and normotensive (2K) rats. In the hypertensive rats (basal 196.70 +/- 8.70 mmHg, n=5), the MAP was reduced in -34.25 +/- 13.50 mmHg(P < 0.05) 6 h after administration of 10 mmol/L/Kg of the compound in bolus. In normotensive rats the compound had no effect. We have also studied the effect of the injection of 0.1 mmol/L/Kg in normotensive (basal 118.20 +/- 11.25 mmHg, n = 4), moderate (basal 160.90 +/- 2.30 mmHg, n = 6), and severe hypertensive rats (basal 202.46 +/- 16.74 mmHg, n = 6). The compound at the dose of 0.1 mmol/L/Kg did not have effect (P> 0.05) on MAP of normotensive and moderate hypertensive rats. However, in the severe hypertensive rats (basal 202.46 +/- 16.70 mmHg, n = 6) there was a significant reduction on the MAP of -28.64 +/- 12.45 mmHg. The NO donor reduced the MAP of all hypertensive rats in the dose of 10 mmol/L/Kg and in the severe hypertensive rats at the dose of 0.1 mmol/L/Kg. The compound was not cytotoxic to the rat aortic vascular smooth muscle cells in the concentration of 0.1 mmol/LKg that produced the maximum relaxation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The precise mechanisms explaining the anti-hypertensive effects produced by quercetin are not fully known. Here, we tested the hypothesis that chronic quercetin treatment inhibits the angiotensin-converting enzyme (ACE). We examined whether quercetin treatment for 14 days reduces in vivo responses to angiotensin I or enhances the responses to bradykinin in anaesthetised rats. We measured the changes in systemic arterial pressure induced by angiotensin I in doses of 0.03-10 mu g/kg, by angiotensin II in doses of 0.01-3 mu g/kg, and to bradykinin in doses of 0.03-10 mu g/kg in anaesthetised rats pre-treated with vehicle (controls), or daily quercetin 10 mg/kg intraperitoneally for 14 days, or a single i.v. dose of captopril 2 mg/kg. Plasma ACE activity was determined by a fluorometric method. Plasma quercetin concentrations were assessed by high performance liquid chromatography. Quercetin treatment induced no significant changes in the hypertensive responses to angiotensin I and angiotensin II, as well in the hypotensive responses to bradykinin (all p > 0.05). Conversely, as expected, a single dose of captopril inhibited the hypertensive responses to angiotensin I and potentiated the bradykinin responses (all p < 0.01), while no change was found in the vascular responses to angiotensin II (all p > 0.05). In addition, although we found significant amounts of quercetin in plasma samples (mean = 206 ng/mL), no significant differences were found in plasma ACE activity in rats treated with quercetin compared with those found in the control group (50 +/- 6 his-leu nmol/min/mL and 40 +/- 7 his-leu nmol/min/mL, respectively; p > 0.05). These findings provide strong evidence indicating that quercetin does not inhibit ACE in vivo or in vitro and indicate that other mechanisms are probably involved in the antihypertensive and protective cardiovascular effects associated with quercetin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a novel inhibitor of the metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16), N-[1-(R, S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA2), in which alpha-aminoisobutyric acid (Aib) is substituted for an alanine in a well-described but unstable inhibitor, cFP-AAY-pAB. This substitution increases the resistance of the inhibitor to degradation without altering potency. In the present study, we investigated the effects of JA2 (5 mg/kg) on the responses of mean arterial pressure to bradykinin, angiotensin I, and angiotensin II in conscious rabbits. The depressor responses to both low (10 ng/kg) and high (100 ng/kg) doses of bradykinin were increased 7.0 +/- 2.7-fold and 1.5 +/- 0.3-fold, respectively, during the 30 minutes after JA2 administration (mean+/-SEM, n=8). Bradykinin potentiation was undiminished 4 hours after JA2 injection. In contrast, the hypertensive effects of angiotensins I and II were unaltered, indicating that the bradykinin-potentiating effects were not due to angiotensin-converting enzyme inhibition. These data suggest that JA2 is not only a potent and specific inhibitor of EP24.15 and EP24.16 but is also stable in vivo. Furthermore, the potentiation of bradykinin-induced hypotension by JA2 suggests for the first time a role for one or both of these peptidases in the metabolism of bradykinin in the circulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) contribute significantly to myocardial ischaemia-reperfusion (I-R) injury. Recently the combination of the antioxidants vitamin E (VE) and alpha-lipoic acid (alpha-LA) has been reported to improve cardiac performance and reduce myocardial lipid peroxidation during in vitro I-R. The purpose of these experiments was to investigate the effects of VE and alpha-LA supplementation on cardiac performance, incidence of dysrhythmias and biochemical alterations during an in vivo myocardial I-R insult. Female Sprague-Dawley rats (4-months old) were assigned to one of the two dietary treatments: (1) control diet (CON) or (2) VE and alpha-LA supplementation (ANTIOXID). The CON diet was prepared to meet AIN-93M standards, which contains 75 IU VE kg(-1) diet. The ANTIOXID diet contained 10 000 IU VE kg(-1) diet and 1.65 g alpha-LA kg(-1) diet. After the 14-week feeding period, significant differences (P < 0.05) existed in mean myocardial VE levels between dietary groups. Animals in each experimental group were subjected to an in vivo I-R protocol which included 25 min of left anterior coronary artery occlusion followed by 10 min of reperfusion. No group differences (P > 0.05) existed in cardiac performance (e.g. peak arterial pressure or ventricular work) or the incidence of ventricular dysrhythmias during the I-R protocol. Following I-R, two markers of lipid peroxidation were lower (P < 0.05) in the ANTIOXID animals compared with CON. These data indicate that dietary supplementation of the antioxidants, VE and alpha-LA do not influence cardiac performance or the incidence of dysrhythmias but do decrease lipid peroxidation during in viva I-R in young adult rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of these experiments was to examine the effects of dietary antioxidant supplementation with vitamin E (VE) and alpha -lipoic acid (alpha -LA) on biochemical and physiological responses to in vivo myocardial ischemia-reperfusion (I-R) in aged rats. Male Fischer-334 rats (18 mo old) were assigned to either 1) a control diet (CON) or 2) a VE and alpha -LA supplemented diet (ANTIOX). After a 14-wk feeding period, animals in each group underwent an in vivo I-R protocol (25 min of myocardial ischemia and 15 min of reperfusion). During reperfusion, peak arterial pressure was significantly higher (P < 0.05) in ANTIOX animals compared with CON diet animals. I-R resulted in a significant increase (P < 0.05) in myocardial lipid peroxidation in CON diet animals but not in ANTIOX animals. Compared with ANTIOX animals, heart homogenates from CON animals experienced significantly less (P < 0.05) oxidative damage when exposed to five different in vitro radical producing systems. These data indicate that dietary supplementation with VE and -LA protects the aged rat heart from I-R-induced lipid peroxidation by scavenging numerous reactive oxygen species. Importantly, this protection is associated with improved cardiac performance during reperfusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While there is a developing understanding of the influence of sleep on cardiovascular autonomic activity in humans, there remain unresolved issues. In particular, the effect of time within the sleep period, independent of sleep stage, has not been investigated. Further, the influence of sleep on central sympathetic nervous system (SNS) activity is uncertain because results using the major method applicable to humans, the low frequency (LF) component of heart rate Variability (HRV), have been contradictory, and because the method itself is open to criticism. Sleep and cardiac activity were measured in 14 young healthy subjects on three nights. Data was analysed in 2-min epochs. All epochs meeting specified criteria were identified, beginning 2 h before, until 7 h after, sleep onset. Epoch values were allocated to 30-min bins and during sleep were also classified into stage 2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The measures of cardiac activity were heart irate (HR), blood pressure (BP), high frequency (HF) and LF components of HRV and pre-ejection period (PEP). During non-rapid eye movement (NREM) sleep autonomic balance shifted from sympathetic to parasympathetic dominance, although this appeared to be more because of a shift in parasympathetic nervous system (PNS) activity. Autonomic balance during REM was in general similar to wakefulness. For BP and the HF and LF components the change occurred abruptly at sleep onset and was then constant over time within each stage of sleep, indicating that any change in autonomic balance over the sleep period is a consequence of the changing distribution of sleep stages. Two variables, HR and PEP, did show time effects reflecting a circadian influence over HR and perhaps time asleep affecting PEP. While both the LF component and PEP showed changes consistent with reduced sympathetic tone during sleep, their pattern of change over time differed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate whether arterial baroreceptors mediate the training-induced blood pressure fall and resting bradycardia in hypertensive (SHR) and normotensive rats (WKY). Male SHR and WKY rats, submitted to sino-aortic denervation (SAD) or sham surgery (SHAM group), were allocated to training (T; 55% of maximal exercise capacity) or sedentary (S) protocols for 3 months. Rats were instrumented with arterial and venous catheters for haemodynamic measurements at rest (power spectral analysis) and baroreceptor testing. Kidney and skeletal muscles were processed for morphometric analysis of arterioles. Elevated mean arterial pressure (MAP) and heart rate (HR) in SHAM SHRS were accompanied by increased sympathetic variability and arteriolar wall/lumen ratio [+3.4-fold on low-frequency (LF) power and +70%, respectively, versus WKYS, P < 0.05]. Training caused significant HR (similar to 9% in WKY and SHR) and MAP reductions (-8% in the SHR), simultaneously with improvement of baroreceptor reflex control of HR (SHR and WKY), LF reduction (with a positive correlation between LF power and MAP levels in the SHR) and normalization of wall/lumen ratio of the skeletal muscle arterioles (SHR only). In contrast, SAD increased pressure variability in both strains of rats, causing reductions in MAP (-13%) and arteriolar wall/lumen ratio (-35%) only in the SHRS. Training effects were completely blocked by SAD in both strains; in addition, after SAD the resting MAP and HR and the wall/lumen ratio of skeletal muscle arterioles were higher in SHRT versus SHRS and similar to those of SHAM SHRS. The lack of training-induced effects in the chronic absence of baroreceptor inputs strongly suggests that baroreceptor signalling plays a decisive role in driving beneficial training-induced cardiovascular adjustments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background/Aims: The aim of this study is to compare the splanchnic non-hepatic hemodynamics and the metabolic changes during orthotopic liver transplantation between the conventional with bypass and the piggyback methods. Methodology: A prospective, consecutive series of 59 primary transplants were analyzed. Oxygen consumption, glucose, potassium, and lactate metabolism were quantitatively estimated from blood samples from the radial artery and portal vein, collected up to 120 minutes after graft reperfusion. Mean arterial pressure, portal venous pressure, portal venous blood flow, and splanchnic vascular resistance were also measured or calculated at postreperfusion collection times. Results: There was a greater increase in portal venous blood flow (p=0.05) and lower splanchnic vascular resistance (p=0.04) in the piggyback group. Mean arterial pressure and portal venous pressure were similar for both groups. Oxygen, glucose and potassium consumption were higher in the piggyback group, but none of the metabolic parameters differed significantly between groups. Conclusions: In conclusion, the study detected a higher portal venous blood flow and a lower and splanchnic vascular resistance associated with the piggyback technique. After graft reperfusion, no difference in the splanchnic non-hepatic metabolic parameters was observed between the conventional with bypass and the piggyback methods of orthotopic liver transplantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: This study was designed to evaluate serum potassium level variation in a porcine model of hemorrhagic shock ( HS). Methods: Eight pigs were studied in a controlled hemorrhage model of HS. Blood withdrawal began at a 50 mL/min to 70 mL/min rate, adjusted to reach a mean arterial pressure ( MAP) level of 60 mm Hg in 10 minutes. When MAP reached 60 mm Hg, the blood withdrawal rate was adjusted to maintain a MAP decrease rate of 10 mm Hg every 2 minutes to 4 minutes. Arterial and mixed venous blood samples were collected at MAP levels of 60 mm Hg, 50 mm Hg, 40 mm Hg, 30 mm Hg, 20 mm Hg, and 10 mm Hg and analyzed for oxygen saturation, PO(2), PCO(2), potassium, lactate, bicarbonate, hemoglobin, pH, and standard base excess. Results: Significant increase in serum potassium occurred early in all animals. The rate of rise in serum potassium and its levels accompanied the hemodynamic deterioration. Hyperkalemia ( K >5 mmol/L) incidence was 12.5% at 60 mm Hg and 50 mm Hg, 62.5% at 40 mm Hg, 87.5% at 30 mm Hg, and 100% at 20 mm Hg. Strong correlations were found between potassium levels and lactate ( R = 0.82), SvO(2) ( R = 0.87), Delta pH ( R = 0.83), and Delta PCO(2) ( R = 0.82). Conclusions: Serum potassium increase accompanies the onset of HS. The rise in serum potassium was directly related to the hemodynamic deterioration of HS and strongly correlated with markers of tissue hypoxia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Calcium is one of the triggers involved in ischemic neuronal death. Because hypotension is a strong predictor of outcome in traumatic brain injury (TBI), we tested the hypothesis that early fluid resuscitation blunts calcium influx in hemorrhagic shock associated to TBI. Methods: Fifteen ketamine-halothane anesthetized mongrel dogs (18.7 kg +/- 1.4 kg) underwent unilateral cryogenic brain injury. Blood was shed in 5 minutes to a target mean arterial pressure of 40 mm Hg to 45 mm Hg and maintained at these levels for 20 minutes (shed blood volume = 26 mL/kg +/- 7 mL/kg). Animals were then randomized into three groups: CT (controls, no fluid resuscitation), HS (7.5% NaCl, 4 mL/kg, in 5 minutes), and LR (lactate Ringer`s, 33 mL/kg, in 15 minutes). Twenty minutes later, a craniotomy was performed and cerebral biopsies were obtained next to the lesion (""clinical penumbra"") and from the corresponding contralateral side (""lesion`s mirror"") to determine intracellular calcium by fluorescence signals of Fura-2-loaded cells. Results: Controls remained hypotensive and in a low-flow state, whereas fluid resuscitation improved hemodynamic profile. There was a significant increase in intracellular calcium in the injured hemisphere in CT (1035 nM +/- 782 nM), compared with both HS (457 nM +/- 149 nM, p = 0.028) and LR (392 nM +/- 178 nM, p = 0.017), with no differences between HS and LR (p = 0.38). Intracellular calcium at the contralateral, uninjured hemisphere was 438 nM +/- 192 nM in CT, 510 nM +/- 196 nM in HS, and 311 nM +/- 51 nM in LR, with no significant differences between them. Conclusion: Both small volume hypertonic saline and large volume lactated Ringer`s blunts calcium influx in early stages of TBI associated to hemorrhagic shock. No fluid resuscitation strategy promotes calcium influx and further neural damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Dobutamine is the agent of choice for increasing cardiac output during myocardial depression in humans with septic shock. Studies have shown that beta-adrenoceptor agonists influence nitric oxide generation, probably by modulating cyclic adenosine monophosphate. We investigated the effects of dobutamine on the systemic and luminal gut release of nitric oxide during endotoxic shock in rabbits. Materials/Methods: Twenty anesthetized and ventilated New Zealand rabbits received placebo or intravenous lipopolysaccharide with or without dobutamine (5 mu g/kg/min). Ultrasonic flow probes placed around the superior mesenteric artery and the abdominal aorta continously estimated the flow. A segment from the ileum was isolated and perfused, and scrum nitrate/nitrite levels were measured in the perfusate solution and the serum every hour. Results: The mean arterial pressure decreased with statistical significance in the lipopolysaccharide group but not in the lipopolysaccharide/dobutamine group. The abdominal aortic flow decreased statistically significantly after lipopolysaccharide administration in both groups but recovered to base-line in the lipopolysaccharide/dobutamine group. The flow in the superior mesenteric artery was statistically significantly higher in the lipopolysaccharide/dobutamine group than in the lipopolysaccharide group at 2 hours. The serum nitrate/nitrite levels were higher in the lipopolysaccharide group and lower in the lipopolysaccharide/dobutamine group than those in the control group. The gut luminal perfusate serum nitrate/nitric level was higher in the lipopolysaccharide group than in the lipopolysaccharide/dobutamine group. Conclusions: Dobutamine can decrease total and intestinal nitric oxide production in vivo. Those effects seem to be inversely proportional to the changes in blood flow.