971 resultados para Cytoplasmic enzymes
Resumo:
Methylparathion (MP) is an organophosphorus insecticide used world wide in agriculture due to its high activity against a broad spectrum of insect pests. The aim of the study is to understand the effect of methylparathion on the lipid peroxidation, detoxifying and antioxidant enzymes namely catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione Stransferase (GST), total reduced glutathione (GSH), lipid peroxidation (LPO), acetylcholinesterase (AChE) and disease diagnostic marker enzymes in liver, sarcoplasmic (SP) and myofirbirllar (MF) proteins in muscles, lipids and histopathlogical changes in various organs of Labeo rohita of size 75 i 6g at lethal and sublethal level of exposure. The probit analysis showed that the lethal concentration (LC 50%) for 24, 48, 72 and 96h were 15.5mg/L, 12.3mg/L, 11.4mg/L and 10.2mg/L respectively which is much higher compared to the LC50 for juvenile fish. The LPO level and GST activity increased five folds and two folds respectively on exposure to methylparathion at 10.2 mg/L and the level of the enzymes increased, on sub lethal exposure beyond 0.25mg/L. AChE activity was inhibited by 74% at a concentration of 1.8mg/L and 90% at 5.4mg/L. The disease diagnostic marker enzymes AST, ALT, ALP and LDH increased by about 2, 3 ,3 and 2 folds respectively at pesticide concentration of 10.2mg/L when compared to control. On sub lethal exposure, however the enzymes did not show any significant changes up to 0.5mg/L. At a concentration of 10.2 mg/L, there was a three fold increase in myofibrillar proteins while the increase in sarcoplasmic protein was above 1.5 fold. On sub lethal exposure, significant alteration was noticed up to 30 days up to 1mg/L of methylparathion concentration. Further exposure up to 45 days increased sarcoplasmic proteins (upto 0.5mg/L). ln the case of myofibrillar proteins, noticeable changes were observed at 1mg/L concentration right from 15th day. The cholesterol content in brain tissues increased by about 27% at methylparathion concentration of 5.4 mglL. However at 0.25mg/L sub lethal concentration, no significant alteration was observed in enzyme activity, muscle proteins, lipids and histopathology of the tissues. The results suggest that methylparathion has the potential to induce oxidative stress in fish, and that liver, muscle and brains are more sensitive organs of Labeo rohita, with poor antioxidant potentials at higher concentrations of the pesticide. The various parameters studied in this investigation can also be used as biomarkers of methylparathion exposure.
Resumo:
Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements
Resumo:
Alpha glucan phosphorylase plays a very significant role in glycolysis. The inhibition and activation of this enzyme have significant effect on the rate of glycolysis. The rate of glycolysis is also determined by the interconversion between the active 3 and inactive Q forms of phosphorylase by two specific enzymes called phosphorylase phosphatase and phosphorylase kinase. The allosteric properties and interconversion mechanism reported for well—studied animal muscle phosphorylases do not fall under a general pattern. Studies using purified phosphorylase from marine sources are scanty. Detailed studies using specialised tissues from more marine animals are necessary to find the factors that control the properties and activities of the enzyme. This thesis is an attempt in this direction. The thesis deals with a detailed study of the control of the phosphorylase by both allosterism and interconversion between the g and b forms from four different aquatic animals of different habitat. Phosphorylase frm the four different animal muscles were purified either partially or completely and the kinetic and control properties were studied.
Studies on the digestive enzymes of the cultivable grey mullet liza parsia (hamilton buchanan, 1822)
Resumo:
Culturing of fish in captivity demands a detailed knowledge on well balanced diet and adequate feeding. Formulation and production of nutritionally balanced diets for fish require research, quality control and biological evaluation. It is often assuemed that what is ingested is also digested, but this is not always be the case. Digestion depends upon both the physical state of the food and the kind and quantity of enzymes in the digestive tract. The ability of fish to digest a particular component of diet can be ascertained by investigating the complement of digestive enzymes present along the digestive tract. Investigations on the basic digestive physiology will not only enhance our present knowledge on nutrition and feed development, but will also contribute in understanding the digestive functions of lower vertebrates. It is against this background that the present topic of investigation "Studies on the digestive enzymes of the cultivable grey mullet Liza parsia Hamilton Buchanan, l822" has been selected. The thesis is arranged and presented in eight chapters.
Resumo:
The efficiency of a diet not only depends on its nutrient composition and nutrient balance but also on the effective utilization by the animal. In the utilization of dietary nutrients, the digestive enzymes play the crucial role of catalysing the hydrolytic reactions, splitting the macromolecules into simple absorbable molecules. The activity of these biocatalysts is regulated by alterations in pH, temperature, substrate type and concentrations, and also by the presence of activators and inhibitors. Thus any shift from the optimum conditions necessary for these enzymes may affect their activity, thereby correspondingly modify the digestibility of the nutrients supplied to the animals. Thus, investigations on the important digestive enzymes and their preferential conditions of activity are essential, so that the results obtained could be used in rationally adjusting the quality and quantity of feed supplied to the different stages of prawns In India, directed research on nutritional physiology and biochemical approaches to digestion in commercially important prawns is taken up_ only recently, and the field is still in an infant stage. In view of its emerging importance it is identified as an area of priority and the present investigation has been carried out on the Indian white prawn Penaeus indicus
Resumo:
3.4. Lipase (EC-3.1. 1.3) 3.5. Other Known Enzymes 3.6. Extremozymes (Enzymes from extremophiles) 3.7. Recognition of Valuable Extremozymes 4. Enzymes as Tools in Biotechnology 4.1. Restriction Enzymes from Marine Bacteria 4.2. Other Nucleases from Marine Bacteria 4.3. Bacteriolytic Enzyme by Bacteriophage from Seawater 5. Innovations in Enzyme Technology 5.1. Enzyme Engineering 5.2. Immobilization Technology 5.3. Gene Cloning for Marine Enzymes 6. Future Prospects
Resumo:
Mesoporous silica nanoparticles provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. Additionally, mesoporous silica materials can be synthesized together with other nanomaterials to create new nanocomposites, opening up a wide variety of potential applications. The ready functionalization of silica materials makes them ideal candidates for bioapplications and catalysis. These properties of mesoporous silica like high surface areas, large pore volumes and ordered pore networks allow them for higher loading of drugs or biomolecules. Comparative studies have been made to evaluate the different procedures; much of the research to date has involved quick exploration of new methods and supports. Requirements for different enzymes may vary, and specific conditions may be needed for a particular application of an immobilized enzyme such as a highly rigid support. In this endeavor, mesoporous silica materials having different pore size were synthesized and easily modified with active functional groups and were evaluated for the immobilization of enzymes. In this work, Aspergillus niger glucoamylase, Bovine liver catalase, Candida rugosa lipase were immobilized onto support by adsorption and covalent binding. The structural properties of pure and immobilized supports are analyzed by various characterization techniques and are used for different reactions of industrial applications.
Resumo:
The major digestive enzyme activities and digestive indices were compared between Etroplus suratensis and Oreochromis mossambicus. Pepsin - like acid proteases that acts on low pH has been identified all along the digestive tract of both the fishes. Comparatively low alpha amylase activity is shown by the E. suratensis and the enzyme is distributed almost equally throughout the intestinal segments in both the species. Very low alkaline protease activity is found in the stomach of both the fishes and in O. mossambicus, the enzyme activity diminishes extensively towards the posterior portion of the intestine whereas in E. suratensis the activity increases towards the posterior part. The present study showed that lipase is one of the prominent digestive enzymes in O. mossambicus with a remarkable specific activity throughout the digestive tract than that of E. suratensis .It has been noted that O. mossambicus has a higher values for digestive somatic index, hepato somatic index, intestinal coefficient and gut Vs standard length ratio than that of E. suratensis indicating its higher digestive and metabolic capabilities. The early maturity and fast growth of O. mossambicus can be explained by their enhanced digestive indices. The compa ratively low activities of acid protease, amylase, lipase and total alkaline protease of E. suratensis revealed poor digestive capacity than that of O. mossambicus
Resumo:
Soil community genomics or metagenomics is employed in this study to analyze the evolutionary related - ness of mangrove microbial community. The metagenomic DNA was isolated from mangrove sediment and 16SrDNA was amplified using universal primers. The amplicons were ligated into pTZ57R/T cloning vector and transformed onto E. coli JM109 host cells. The recombinant plasmids were isolated from positive clones and the insert was confirmed by its reamplification. The amplicons were subjected to Amplified Ribosomal DNA Restriction Analysis (ARDRA) using three different tetra cutter restriction enzymes namely Sau3A1, Hha1 and HpaII. The 16SrDNA insert were sequenced and their identity was determined. The sequences were submitted to NCBI database and accession numbers obtained. The phylo - genetic tree was constructed based on Neighbor-Joining technique. Clones belonged to two major phyla of the bacterial domain, namely Firmicutes and Proteobacteria, with members of Firmicutes predominating. The microbial diversity of the mangrove sediment was explored in this manner.
Resumo:
Cochin University of Science And Technology
Resumo:
RNA mediated gene silencing pathways are highly conserved among eukaryotes and they have been well investigated in animals and in plants. Longer dsRNA molecules trigger the silencing pathways: RNase III proteins and their dsRNA binding protein (dsRBP) partners recognize those molecules as a substrate and process 21 nucleotide long microRNAs (miRNAs) or small interfering RNAs (siRNAs). Some organisms encode RNA dependent RNA polymerases (RdRPs), which are able to expand the pool of existing siRNAs. Argonaute proteins are able to bind small regulatory RNAs and are subsequently recruited to target mRNAs by base complementary. This leads in turn to transcriptional or posttranscriptional silencing of respective genes. The Dictyostelium discoideum genome encodes two Dicer homologues (DrnA and DrnB), five Argonaute proteins (AgnA to AgnE) and three RdRPs (RrpA to RrpC). In addition, the amoeba is known to express miRNAs and siRNAs, while the latter derive mainly from the DIRS-1 retrotransposon. One part of this work focused on the miRNA biogenesis pathway of D. discoideum. It was shown that the dsRNA binding protein RbdB is a necessary component for miRNA processing in the amoeba. There were no mature miRNAs detectable by Northern blot analysis in rbdB- strains, which is also true for drnB mutants. Moreover, primary miRNA-transcripts (pri-miRNAs) accumulated in rbdB- and drnB- strains. Fluorescence microscopy studies showed a nuclear localization of RbdB. RbdB accumulated in distinct perinucleolar foci. These were reminiscent of plant dicing bodies that contain essential protein components for miRNA processing. It is well known that RNase III enzymes and dsRBPs work together during miRNA processing in higher eukaryotes. This work demonstrated that the same is true for members of the amoebozoa supergroup. In Arabidopsis the nuclear zinc finger protein Serrate (SE) is also necessary for miRNA processing. The D. discoideum homologue SrtA, however, is not relevant which has been shown by the analysis of the respective knockdown strain. MiRNAs are known to be differentially expressed in several RNAi knockout strains. The accumulation of miRNAs in agnA- strains and a strong decrease in rbdB- strains were criteria that could thus be successfully used (among others) to identify and validate new miRNAs candidates by Illumina®-RNA sequencing. In another part of this study, the silencing and amplification of the DIRS-1 retrotransposons was analyzed in more detail. It was already known that DIRS-1 transcripts and extrachromosomal DIRS-1 DNA molecules accumulated in agnA- strains. This phenotype was correlated with the loss of endogenous DIRS-1 siRNAs in the knockout strain. By deep sequencing analysis of small RNAs from the AX2 wild type and the agnA- strain, the strong decrease of endogenous DIRS-1 siRNAs in the mutant strain (accounting for 70 %) could be confirmed. Further analysis of the data revealed an unequal distribution of DIRS-1 derived siRNAs along the retroelement in the wild type strain, since only very few of them matched the inverted terminal repeats (ITRs) and the 5’- half of the first open reading frame (ORF). Besides, sense and antisense siRNAs were asymmetrically distributed, as well. By using different reporter constructs it was shown indirectly that AgnA is necessary for the RrpC mediated production of secondary DIRS-1 siRNAs. These analyses also demonstrated an amplification of siRNAs in 5’- and in 3’-direction. Further analysis of the agnA- strain revealed that not only DIRS-1 sense transcripts but also ORF2 and ORF3 encoded proteins were enriched. In contrast, the ORF1 encoded protein GAG was equally expressed in the mutant and the wild type. This might reflect the unequal distribution of endogenous DIRS-1 siRNAs along the retrotransposon. Southern Blot and PCR-analyses showed that extrachromosomal DIRS-1 DNA molecules are present in the cytoplasm of angA- strains and that they are complementary to sense transcripts of intact DIRS-1 elements. Thus, the extrachromosomal DIRS-1 intermediates are likely incomplete cDNA molecules generated by the DIRS-1 encoded reverse transcriptase. One could hypothesize that virus like particles (VLPs) are the places of DIRS-1 cDNA synthesis. At least, DIRS-1 GAG proteins interact and fluorescence microscopy studies showed that they localize in distinct cytoplasmic foci which accumulate in close proximity to the nuclei.
Resumo:
Ein essentieller Bestandteil in dem Mechanismus der Translationskontrolle sind RNA-Protein-Wechselwirkungen. Solche Interaktionen konnten in Translationssystemen an zwei unabhängigen cis-regulierenden Elementen durch in vitro-Bindungsanalysen mit individuellen rekombinanten Proteinen dokumentiert werden. Im Fall des translational control elements (TCE), welches ein konserviertes Sequenz-Element in der Mst(3)CGP-Genfamilie darstellt, wird eine negative Translationskontrolle durch die Bindung der Proteine CG3213, CG12470, CG1898, dFMR1, Exuperantia und Orb2 an diese Sequenz vermittelt (Stinski, 2011). Neben den in Bindungsstudien positiv getesteten Kandidaten dFMR1 und Orb2 (Stinski, 2011) wurde in der vorliegenden Dissertation CG3213 als weiterer direkter Bindungspartner an das TCE dokumentiert. Ein Abgleich der genomweiten Zusammenstellung von Proteininteraktionen in der Datenbank InterologFinder lieferte zwei weitere potentielle Kandidaten: CG34404 und CG3727. Allerdings schließen Northern-Analysen und das Proteinexpressionsmuster eine zentrale Rolle in der Drosophila-Spermatogenese für diese nahezu aus. In Kolokalisationsstudien einiger TCE-Komplex-Kandidaten mit CG3213 als Referenz konnten eindeutige Übereinstimmungen der Fluoreszenzmuster mit CG12470 in der postmeiotischen Phase beschrieben werden, wohingegen mit Orb2 (postmeiotisch) und CG1898 (prämeiotisch) nur eine geringe Kolokalisation erkannt wurde. Punktstrukturen in den Verteilungsmustern sowohl von CG3213 als auch von CG12470 ließen sich nicht mit ER- und mitochondrienspezifischen Markern korrelieren. Im Anschluss der Meiose konnte eine deutliche Intensitätserhöhung des CG3213-Proteins beobachtet werden, was eventuell durch eine veränderte Translationseffizienz zustande kommen könnte. Exuperantia (Exu) stellt einen bekannten Regulator für eine Reihe von translationskontrollierten mRNAs dar (Wang und Hazelrigg, 1994). Die Quantifizierungen der CG3213-mRNA in exu-mutantem Hintergrund bestätigen, dass auch die Transkriptmenge der CG3213-mRNA durch Exu reguliert wird, was die obige Interpretation stützen würde. Für das zweite cis-regulierende Element, das cytoplasmic polyadenylation element (CPE), konnte eine direkte Bindung mit dem CPEB-Homolog in Drosophila (Orb2) gezeigt werden, welches auch eine Komponente des mst87F-RNP-Komplexes ist. Ein vermuteter Interaktionspartner dieses CPEBs ist Tob, weshalb die Verteilung beider Proteine in einem Kombinationsstamm verglichen wurde. In dem teilweise übereinstimmenden Fluoreszenzmuster ist Tob an den distalen Spermatidenenden auffallend konzentriert. Das gesamte Tob-Muster jedoch legt eine Verteilung in den Mitochondrien nahe, wie die MitoTracker®-Färbung belegt. Somit wurde erstmals ein Mitglied der Tob/BTG-Genfamilie in der Drosophila-Spermatogenese mit Mitochondrien in Verbindung gebracht. Die Lokalisierung dieser Proteine ist bislang unklar, jedoch konnte eine Kernlokalisation trotz der N-terminalen NLS-Sequenz mit Hilfe einer Kernfärbung ausgeschlossen werden.
Resumo:
Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have been reported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a general agreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstream of EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However, there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKI efficacy. We recently monitored gene expression profiles and sub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin, epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cell sensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated (up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times) of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second, loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breast cancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells. In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene, oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 function also leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands, and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. The relevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypass the antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades
Resumo:
Per tal d’avaluar l’impacte de la contaminació en els ecosistemes aquàtics, aquesta tesi es centra en una aproximació multi-biomarcador en els biofilms. En complement dels biomarcadors clàssics, es va demostrar que les activitats dels enzims antioxidants (AEA): catalasa, ascorbat peroxidasa i glutatió reductasa eren biomarcardors d'estrès oxidatiu en els biofilms. Tot i que les AEA poden veure's influenciades amb la mateixa mesura per factors naturals (edat del biofilm, llum de colonització o d'exposició) i contaminants (herbicides i farmacèutics), aquestes AEA permeten entendre millor l'efecte dels contaminants. Cal remarcar que assajos de toxicitat aguda es poden utilitzar per comparar la capacitat antioxidant entre comunitats i conèixer la seva pre-exposició a l'estrès oxidatiu. Aquesta aproximació multi-biomarcador a nivell de comunitat és especialment interessant per avaluar la toxicitat dels contaminants emergents (β-blockers) sobre espècies no-diana. Per tal de millorar-la, també es va verificar la possibilitat de mesurar l'expressió gènica en biofilms.