449 resultados para Cyclase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, both physiological and cellular effects are elicited by natriuretic peptides (NPs), a novel type of plant hormone. It was found that rat ANP (rANP) influenced stomatal opening movement in Tradescantia sp., where a significant increase in stomatal opening was observed in the presence of 1 µM rANP. Furthermore, this effect is mediated by cGMP, a (putative) second messenger of NPs. Two inhibitors of guanylyl cyclase, LY 83583 and methylene blue, inhibited rANP-induced stomatal opening. In contrast, stomatal opening is induced in a concentration dependent manner by the cell permeant cGMP analogue 8-Br-cGMP. In addition it was found, that like in animals, the secondary structure of rANP is essential for rANP responses. Linearised rANP is biologically inactive. Since ANP elicit plant responses, an attempt was made to isolate NP analogues from plants. A protocol for partially purifying NP from plants was developed. It was found that two fractions eluted from an immunoaffinity chromatography column (0.5 M KCI eluted fraction and 0.75 M KCI eluted fraction) were biologically active. The level of cGMP in response to NPs was also tested. It is suggested that the receptor of NP is specific since only 0.75 M KCI eluted fractions increased cGMP levels in Zea mays root stele tissue. rANP did not elicit an effect on cGMP levels in this tissue and LY 83583 did not affect this response. It is therefore argued that a plant specific biologically active NP system is present in the stele and it is predicted that NPs modulate solute movement in this tissue. NPs also influence K+, Na+ and H+ fluxes in Zea mays root stele. Increase in both K+ and Na+ uptake were observed after 30 min., while H+ flux shifted immediately toward influx in the presence of both 0.5 and 0.75 KCI eluted fractions. Finally, a model is proposed for the effect of NPs on solute movement and its signalling system in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the nature of previous termvasodilator mechanismsnext term in the dorsal aorta of the giant shovelnose ray, Rhinobatus typus. Anatomical techniques found no evidence for an endothelial nitric oxide synthase, but neural nitric oxide synthase was found to be present in the perivascular nerve fibres of the dorsal aorta and other arteries and veins using both NADPH-diaphorase staining and immunohistochemistry with a specific neural NOS antibody. Arteries and veins both contained large nNOS-positive nerve trunks from which smaller nNOS-positive bundles branched and formed a plexus in the vessel wall. Single, varicose nNOS-positive nerve fibres were present in both arteries and veins. Within the large bundles of both arteries and veins, groups of nNOS-positive cell bodies forming microganglia were observed. Double-labelling immunohistochemistry using an antibody to tyrosine hydroxylase showed that nearly all the NOS nerves were not sympathetic. Acetylcholine always caused constriction of isolated rings of the dorsal aorta and the nitric oxide donor, sodium nitroprusside, did not mediate any dilation. Addition of nicotine (3×10−4 M) to preconstricted rings caused a vasodilation that was not affected by the nitric oxide synthase inhibitor, Image -NNA (10−4 M), nor the soluble guanylyl cyclase inhibitor, ODQ (10−5 M). This nicotine-mediated vasodilation was, therefore, not due to the synthesis and release of NO. Disruption of the endothelium significantly reduced or eliminated the nicotine-mediated vasodilation. In addition, indomethacin (10−5 M), an inhibitor of cyclooxygenases, significantly increased the time period to maximal dilation and reduced, but did not completely inhibit the nicotine-mediated vasodilation. These data support the hypothesis that a prostaglandin is released from the vascular endothelium of a batoid ray, as has been described previously in other groups of fishes. The function of the nitrergic innervation of the blood vessels is not known because nitric oxide does not appear to regulate vascular tone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study determined the role of nitric oxide (NO) in neurogenic vasodilation in mesenteric resistance arteries of the toad Bufo marinus. NO synthase (NOS) was anatomically demonstrated in perivascular nerves, but not in the endothelium. ACh and nicotine caused TTX-sensitive neurogenic vasodilation of mesenteric arteries. The ACh-induced vasodilation was endothelium-independent and was mediated by the NO/soluble guanylyl cyclase signaling pathway, inasmuch as the vasodilation was blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and the NOS inhibitors Nω- nitro-L-arginine methyl ester and Nω-nitro-L-arginine. Furthermore, the ACh-induced vasodilation was significantly decreased by the more selective neural NOS inhibitor N5-(1-imino-3-butenyl)-L-ornithine. The nicotine-induced vasodilation was endothelium-independent and mediated by NO and calcitonin gene-related peptide (CGRP), inasmuch as pretreatment of mesenteric arteries with a combination of Nω-nitro-L-arginine and the CGRP receptor antagonist CGRP-(8–37) blocked the vasodilation. Clotrimazole significantly decreased the ACh-induced response, providing evidence that a component of the NO vasodilation involved Ca2+-activated K+ or voltage-gated K+ channels. These data show that NO control of mesenteric resistance arteries of toad is provided by nitrergic nerves, rather than the endothelium, and implicate NO as a potentially important regulator of gut blood flow and peripheral blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives
Using 2 sequential studies in HOPE (Heart Outcomes Prevention Evaluation) study–type patients, the aims of this study were: 1) to test the hypothesis that ramipril improves platelet nitric oxide (NO) responsiveness: and 2) to explore biochemical and physiological effects of ramipril in a cohort selected on the basis of platelet NO resistance.

Background
Ramipril prevents cardiovascular events, but the bases for these effects remain uncertain. NO resistance at both the platelet and vascular levels is present in a substantial proportion of patients with diabetes or ischemic heart disease and is an independent risk factor for cardiovascular events.

Methods
Study 1 was a double-blind, randomized comparison of ramipril (10 mg) with placebo in a cohort of patients (n = 119) with ischemic heart disease or diabetes plus additional coronary risk factor(s), in which effects on platelet responsiveness to NO were compared. Study 2 was a subsequent short-term evaluation of the effects of ramipril in a cohort of subjects (n = 19) with impaired platelet NO responsiveness in whom additional mechanistic data were sought.

Results
In study 1, ramipril therapy increased platelet responsiveness to NO relative to the extent of aggregation (p < 0.001), but this effect occurred primarily in patients with severely impaired baseline NO responsiveness (n = 41). In study 2, ramipril also improved platelet NO responsiveness (p < 0.01), and this improvement was correlated directly with increased NO-stimulated platelet generation of cyclic guanosine monophosphate (p < 0.02) but not with changes in plasma thrombospondin-1 levels.

Conclusions
Ramipril ameliorates platelet NO resistance in HOPE study–type patients, with associated increases in soluble guanylate cyclase responsiveness to NO. This effect is likely to contribute to treatment benefit and define patients in whom ramipril therapy is particularly effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origins and actions of gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) in the mammalian cardiovascular system have received considerable attention and it is evident that these three "gasotransmitters" perform a variety of homeostatic functions. The origins, actions and disposition of these gasotransmitters in the piscine vasculature are far from resolved. In most fish examined to date, NO or NO donors are generally in vitro and in vivo vasodilators acting via soluble guanylyl cyclase, although there is evidence for NO-mediated vasoconstriction. Injection of sodium nitroprusside into trout causes hypotension that is attributed to a reduction in systemic resistance. Unlike mammals, NO does not appear to have an endothelial origin in fish blood vessels as an endothelial NO synthase has not identified. However, neural NO synthase is prevalent in perivascular nerves and is the most likely source of NO for cardiovascular control in fish. CO is a vasodilator in lamprey and trout vessels, and it, like NO, appears to exert its action, at least in part, via guanylyl cyclase and potassium channel activation. Inhibition of CO production increases resting tone in trout vessels suggestive of tonic CO activity, but little else is known about the origin or control of CO in the fish vasculature. H(2)S is synthesized by fish vessels and its constrictory, dilatory, or even multi-phasic actions, are both species- and vessel-specific. A small component of H(2)S-mediated basal activity may be endothelial in origin, but to a large extent H(2)S affects vascular smooth muscle directly and the mechanisms are unclear. H(2)S injected into the dorsal aorta of unanesthetized trout often produces oscillations in arterial blood pressure suggestive of H(2)S activity in the central nervous system as well as peripheral vasculature. Collectively, these studies hint at significant involvement of the gasotransmitters in piscine cardiovascular function and hopefully provide a variety of avenues for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammals, adrenomedullin (AM) is a potent vasodilator through signalling pathways that involve the endothelium. In teleost fishes, a family of five AMs are present (AM1/4, AM2/3 and AM5) with four homologous AMs (AM1, AM2/3 and AM5) recently cloned from the Japanese eel, Anguilla japonica. Both AM2 and AM5 have been shown to be strong in vivo vasodepressors in eel, but the mechanism of action of homologous AMs on isolated blood vessels has not been examined in teleost fish. In this study, both eel AM2 and AM5 caused a marked vasodilation of the dorsal aorta. However, only AM5 consistently dilated the small gonadal artery in contrast to AM2 that had no effect in most preparations. Neither AM2 nor AM5 had any effect when applied to the first afferent branchial artery; in contrast, eel ANP always caused a large vasodilation of the branchial artery. In the dorsal aorta, indomethacin significantly reduced the AM2 vasodilation, but had no effect on the AM5 vasodilation. In contrast, removal of the endothelium significantly enhanced the AM5 vasodilation only. In the gonadal artery, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) significantly reduced the AM5 vasodilation suggesting a role for soluble guanylyl cyclase in the dilation, but l-NNA and removal of the endothelium had no effect. The results of this study indicate that AM2 and AM5 have distinct vasodilatory effects that may be due to the peptides signalling via different receptors to regulate vascular tone in eel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The aim of the present study was to examine the effects of long-term nitric oxide (NO) blockade on contractions of the rat ileum induced by muscarinic agonists.2. Male Wistar rats received the NO synthesis inhibitor N (G) -nitro-l-arginine methyl ester (l-NAME; 20 mg/rat per day) in drinking water for 7, 15, 30 and 60 days. Concentration-responses curves to methacholine and carbachol were obtained and pEC(50) values were calculated. Saturation binding assays were performed in membranes prepared from rat ileum after 60 days of l-NAME treatment and the dissociation constant (K-D ) and maximal number of binding sites (B-max ) were determined by Scatchard analysis.3. The NO synthase activity of the ileum was markedly reduced in all l-NAME-treated groups. At 60 days after l-NAME treatment, a significant increase in the potency of methacholine (fourfold) and carbachol (threefold) was observed. In binding studies, we found a significant increase in B-max for [(3) H]-quinuclidinyl benzilate of approximately 57% in the l-NAME treated group without any significant change in K-D values. The contractile response to methacholine was not modified by the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (3 mumol/L). No morphological alterations in the rat ileum were observed in l-NAME-treated rats.4. Our findings suggest that treatment with l-NAME for 60 days induces a marked increase in the potency of methacholine and carbachol, as well as an increase in receptor number in the rat ileum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipolytic activity of fish (Hoplias malabaricus), toad (Bufo paracnemis), and snake (Philodryas patagoniensis) adipose tissue was investigated in vivo and in vitro. Catecholamines or glucagon did not affect the release of free fatty acids (FFA) by incubated fish and toad adipose tissue. Catecholamines also failed to activate snake adipose tissue lipolysis, which even decreased in the presence of epinephrine. However, glucagon stimulated both the lipolytic activity of reptilian tissue in vitro and the mobilization of FFA to plasma when administered to snakes in vivo. The release of FFA from incubated fish, amphibian, and reptilian adipose tissue increased markedly in the presence of cAMP or xanthine derivatives, inhibitors of phosphodiesterase. Forskolin or fluoride, activators of specific components of the adenylate cyclase system, strongly stimulated toad adipose tissue lipolysis. The data suggest that adipocyte triacylglycerol lipase of ectotherm vertebrates is activated by a cAMP-mediated phosphorylation and that the organization of the membrane-bound adenylate cyclase system is similar to that of mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Previous studies from our laboratory have shown that luminal perfusion with arginine vasopressin (AVP) stimulates distal tubule secretory potassium flux (J(K)) via V1 receptors (Am J Physiol 278: F809- F816, 2000). In the present work, we investigate the cell signaling mechanism of this process.Methods. In vivo stationary microperfusion was performed in rat cortical distal tubules and luminal K was measured using double K+ resin/reference microelectrodes.Results. In control conditions, J(K) was 0.71 +/- 0.05 nmol. cm(-2).second(-1); this process was inhibited (14%) by 10(-5) mol/L 8-bromo-cyclic adenosine monophosphate (cAMP), and increased by 35% with 10(-8) mol/L phorbol ester [phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC)]. During luminal perfusion with 10(-11) mol/L AVP, J(K) increased to 0.88 +/- 0.08 nmol. cm(-2).seconds(-1). In the presence of 10(-11) mol/L AVP, J(K) was not affected by 10(-4) mol/L H89, a blocker of protein kinase A (PKA), but was inhibited (45%) by 10(-5) mol/L staurosporine, an inhibitor of PKC, and by 41% during perfusion with 5 x 10(-5) mol/L of the cell Ca2+ chelator bis (2-aminophenoxy) ethane-tetraacetic acid (BAPTA). In order to study the role of Ca2+-dependent K channels in the luminal hormonal action, the tubules were perfused with 5 mmol/L tetraethylammonium chloride (TEA) or 10(-7) mol/L iberiotoxin, in the presence of AVP, and JK was significantly reduced by both agents. Iberiotoxin reduced AVP-stimulated J(K) by 36.4%, and AVP-independent J(K) (after blocking V1 receptors) by only 16%.Conclusion. The results suggest that the luminal V1-receptor effect of AVP on J(K) was mediated by the phospholipase C (PLC)/ Ca2+/PKC signaling path and not by adenylate cyclase/cAMP/PKA, therefore probably acting on maxi-potassium channels.