879 resultados para Conservation of energy
Resumo:
In response to evidence of insect pollinator declines, organisations in many sectors, including the food and farming industry, are investing in pollinator conservation. They are keen to ensure that their efforts use the best available science. We convened a group of 32 ‘conservation practitioners’ with an active interest in pollinators and 16 insect pollinator scientists. The conservation practitioners include representatives from UK industry (including retail), environmental non-government organisations and nature conservation agencies. We collaboratively developed a long list of 246 knowledge needs relating to conservation of wild insect pollinators in the UK. We refined and selected the most important knowledge needs, through a three-stage process of voting and scoring, including discussions of each need at a workshop. We present the top 35 knowledge needs as scored by conservation practitioners or scientists. We find general agreement in priorities identified by these two groups. The priority knowledge needs will structure ongoing work to make science accessible to practitioners, and help to guide future science policy and funding. Understanding the economic benefits of crop pollination, basic pollinator ecology and impacts of pesticides on wild pollinators emerge strongly as priorities, as well as a need to monitor floral resources in the landscape.
Resumo:
The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.
Resumo:
We study two-dimensional (2D) turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form νμ(−Δ)μ. By “monoscale-like” we mean that the forcing is applied over a finite range of wavenumbers kmin≤k≤kmax, and that the ratio of enstrophy injection η≥0 to energy injection ε≥0 is bounded by kmin2ε≤η≤kmax2ε. Such a forcing is frequently considered in theoretical and numerical studies of 2D turbulence. It is shown that for μ≥0 the asymptotic behaviour satisfies ∥u∥12≤kmax2∥u∥2, where ∥u∥2 and ∥u∥12 are the energy and enstrophy, respectively. If the condition of monoscale-like forcing holds only in a time-mean sense, then the inequality holds in the time mean. It is also shown that for Navier–Stokes turbulence (μ=1), the time-mean enstrophy dissipation rate is bounded from above by 2ν1kmax2. These results place strong constraints on the spectral distribution of energy and enstrophy and of their dissipation, and thereby on the existence of energy and enstrophy cascades, in such systems. In particular, the classical dual cascade picture is shown to be invalid for forced 2D Navier–Stokes turbulence (μ=1) when it is forced in this manner. Inclusion of Ekman drag (μ=0) along with molecular viscosity permits a dual cascade, but is incompatible with the log-modified −3 power law for the energy spectrum in the enstrophy-cascading inertial range. In order to achieve the latter, it is necessary to invoke an inverse viscosity (μ<0). These constraints on permissible power laws apply for any spectrally localized forcing, not just for monoscale-like forcing.
Resumo:
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L 1, a saturation bound is established for the mode with wavenumber |k| = L −1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
Resumo:
A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface–flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio–Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.
Resumo:
Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide fluxes for 12 months (2011–2012) are reported for the first time for a suburban area in the UK. The results from Swindon are comparable to suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4–1.6) and latent heat in winter (0.05–0.7). A significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5–0.9 MJ m−2 day−1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the suburban nature of the site (44% vegetation) and relatively low built fraction (16%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. On average, surface conductance follows a smooth, asymmetrical diurnal course peaking at around 6–9 mm s−1, but values are larger and highly variable in wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.5 g C m−2 day−1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.
Resumo:
It is increasingly important to know about when energy is used in the home, at work and on the move. Issues of time and timing have not featured strongly in energy policy analysis and in modelling, much of which has focused on estimating and reducing total average annual demand per capita. If smarter ways of balancing supply and demand are to take hold, and if we are to make better use of decarbonised forms of supply, it is essential to understand and intervene in patterns of societal synchronisation. This calls for detailed knowledge of when, and on what occasions many people engage in the same activities at the same time, of how such patterns are changing, and of how might they be shaped. In addition, the impact of smart meters and controls partly depends on whether there is, in fact scope for shifting the timing of what people do, and for changing the rhythm of the day. Is the scheduling of daily life an arena that policy can influence, and if so how? The DEMAND Centre has been linking time use, energy consumption and travel diary data as a means of addressing these questions and in this working paper we present some of the issues and results arising from that exercise.
Resumo:
Taking a perspective from a whole building lifecycle, occupier's actions could account for about 50% of energy. However occupants' activities influence building energy performance is still a blind area. Building energy performance is thought to be the result of a combination of building fabrics, building services and occupants' activities, along with their interactions. In this sense, energy consumption in built environment is regarded as a socio-technical system. In order to understand how such a system works, a range of physical, technical and social information is involved that needs to be integrated and aligned. This paper has proposed a semiotic framework to add value for Building Information Modelling, incorporating energy-related occupancy factors in a context of office buildings. Further, building information has been addressed semantically to describe a building space from the facility management perspective. Finally, the framework guides to set up building information representation system, which can help facility managers to manage buildings efficiently by improving their understanding on how office buildings are operated and used.
Resumo:
Simple predator–prey models with a prey-dependent functional response predict that enrichment (increased carrying capacity) destabilizes community dynamics: this is the ‘paradox of enrichment’. However, the energy value of prey is very important in this context. The intraspecific chemical composition of prey species determines its energy value as a food for the potential predator. Theoretical and experimental studies establish that variable chemical composition of prey affects the predator–prey dynamics. Recently, experimental and theoretical approaches have been made to incorporate explicitly the stoichiometric heterogeneity of simple predator–prey systems. Following the results of the previous experimental and theoretical advances, in this article we propose a simple phenomenological formulation of the variation of energy value at increased level of carrying capacity. Results of our study demonstrate that coupling the parameters representing the phenomenological energy value and carrying capacity in a realistic way, may avoid destabilization of community dynamics following enrichment. Additionally, under such coupling the producer–grazer system persists for only an intermediate zone of production—a result consistent with recent studies. We suggest that, while addressing the issue of enrichment in a general predator–prey model, the phenomenological relationship that we propose here might be applicable to avoid Rosenzweig’s paradox.
Resumo:
Wild bird feeding is popular in domestic gardens across the world. Nevertheless, there is surprisingly little empirical information on certain aspects of the activity and no year-round quantitative records of the amounts and nature of the different foods provided in individual gardens. We sought to characterise garden bird feeding in a large UK urban area in two ways. First, we conducted face-to-face questionnaires with a representative cross-section of residents. Just over half fed birds, the majority doing so year round and at least weekly. Second, a two-year study recorded all foodstuffs put out by households on every provisioning occasion. A median of 628 kcal/garden/day was given. Provisioning level was not significantly influenced by weather or season. Comparisons between the data sets revealed significantly less frequent feeding amongst these ‘keen’ feeders than the face-to-face questionnaire respondents, suggesting that one-off questionnaires may overestimate provisioning frequency. Assuming 100% uptake, the median provisioning level equates to sufficient supplementary resources across the UK to support 196 million individuals of a hypothetical average garden-feeding bird species (based on 10 common UK garden-feeding birds’ energy requirements). Taking the lowest provisioning level recorded (101 kcal/day) as a conservative measure, 31 million of these average individuals could theoretically be supported.
Resumo:
There is a tendency to reduce ventilation rates and natural or hybrid ventilation systems to ensure the conservation of energy in school buildings. However, high indoor pollutant concentration, due to natural or hybrid ventilation systems may have a significant adverse impact on the health and academic performance of pupils and students. Reviewed evidence shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area, eventually indicating that CO2 concentrations can rise to very high levels (about 4000 ppm) in classrooms during occupancy periods. In South Africa’s naturally ventilated classrooms, it is not clear whether the environmental conditions are conducive for learning. In addition, natural ventilation will be minimized given the fact that in cold, wet or windy weather, doors and windows will commonly remain closed. Evidence from literature based studies indicates that the significance of ventilation techniques is not understood satisfactorily and additional information concerning naturally ventilated schools has to be provided for better design and policy formulation. To develop a thorough understanding of the environments in classrooms, many other parameters have to be considered as well, such as outdoor air quality, CO2 concentrations, temperature and relative humidity and safety issues that may be important drawbacks for naturally ventilated schools. The aim of this paper is to develop a conceptual understanding of methods that can be implemented to assess the effectiveness of naturally ventilated classrooms in Gauteng, South Africa. A theoretical concept with an embedded practical methodology have been proposed for the research programme to investigate the relationship between ventilation rates and learning in schools in Gauteng , a province in South Africa. It is important that existing and future school buildings must include adequate outdoor ventilation, control of moisture, and avoidance of indoor exposures to microbiologic and chemical substances considered likely to have adverse effects in South Africa. Adequate ventilation in classrooms is necessary to reduce and/or eradicate the transmission of indoor pollutants.
Resumo:
Numerical models of the atmosphere combine a dynamical core, which approximates solutions to the adiabatic, frictionless governing equations for fluid dynamics, with tendencies arising from the parametrization of other physical processes. Since potential vorticity (PV) is conserved following fluid flow in adiabatic, frictionless circumstances, it is possible to isolate the effects of non-conservative processes by accumulating PV changes in an air-mass relative framework. This “PV tracer technique” is used to accumulate separately the effects on PV of each of the different non-conservative processes represented in a numerical model of the atmosphere. Dynamical cores are not exactly conservative because they introduce, explicitly or implicitly, some level of dissipation and adjustment of prognostic model variables which acts to modify PV. Here, the PV tracers technique is extended to diagnose the cumulative effect of the non-conservation of PV by a dynamical core and its characteristics relative to the PV modification by parametrized physical processes. Quantification using the Met Office Unified Model reveals that the magnitude of the non-conservation of PV by the dynamical core is comparable to those from physical processes. Moreover, the residual of the PV budget, when tracing the effects of the dynamical core and physical processes, is at least an order of magnitude smaller than the PV tracers associated with the most active physical processes. The implication of this work is that the non-conservation of PV by a dynamical core can be assessed in case studies with a full suite of physics parametrizations and directly compared with the PV modification by parametrized physical processes. The nonconservation of PV by the dynamical core is shown to move the position of the extratropical tropopause while the parametrized physical processes have a lesser effect at the tropopause level.
Resumo:
A cornerstone of conservation is the designation and management of protected areas (PAs): locations often under conservation management containing species of conservation concern, where some development and other detrimental influences are prevented or mitigated. However, the value of PAs for conserving biodiversity in the long term has been questioned given that species are changing their distributions in response to climatic change. There is a concern that PAs may become climatically unsuitable for those species that they were designated to protect, and may not be located appropriately to receive newly-colonizing species for which the climate is improving. In the present study, we analyze fine-scale distribution data from detailed resurveys of seven butterfly and 11 bird species in Great Britain aiming to examine any effect of PA designation in preventing extinctions and promoting colonizations. We found a positive effect of PA designation on species' persistence at trailing-edge warm range margins, although with a decreased magnitude at higher latitudes and altitudes. In addition, colonizations by range expanding species were more likely to occur on PAs even after altitude and latitude were taken into account. PAs will therefore remain an important strategy for conservation. The potential for PA management to mitigate the effects of climatic change for retracting species deserves further investigation.
Resumo:
This paper draws from work conducted under the NERC-funded project 'Understanding energy governance at local and community levels'(Project Reference: NE/H013598/1). This project was a 24 month study carried out in collaboration with the UK Energy Research Council which began in April 2010. The particular workpackage from which these interviews were drawn specifically explores the role of local authorities in emerging energy and environmental responsibilities, paying particular attention to current institutional structures and how external forces and actors influence local authorities on their decision making and practices. It is concluded that whilst the role of local authorities has been changing in response to energy and environmental ‘landscape’ issues, their influence on the design and implementation of energy policy in the UK will correspondingly remain as an emerging process for the foreseeable future, with the more progressive local authorities continuing to exert political, social/cultural and technological influence over ways of designing, articulating, and engaging with energy governance at the local level.
Resumo:
Objective: To assess the influence of energy and pulse repetition rate of Er:YAG laser on the enamel ablation ability and substrate morphology. Methods: Fifteen crowns of molars were sectioned in four fragments, providing 60 samples, which were ground to flatten the enamel surface. The initial mass was obtained by weighing the fragments. The specimens were hydrated for I h, fixed, and a 3-mm-diameter area was delimited. Twelve groups were randomly formed according to the combination of laser energies (200, 250, 300, or 350 mJ) and pulse repetition rates (2, 3, or 4 Hz). The final mass was obtained and mass loss was calculated by the difference between the initial and final mass. The specimens were prepared for SEM. Data were submitted to ANOVA and Scheffe test. Results: The 4 Hz frequency resulted in higher mass loss and was statistically different from 2 and 3 Hz (p < 0.05). The increase of frequency produced more melted areas, cracks, and unselective and deeper ablation. The 350 mJ energy promoted greater mass loss, similar to 300 mJ. Conclusions: The pulse repetition rate influenced more intensively the mass loss and morphological alteration. Among the tested parameters, 350 mJ/3 Hz improved the ability of enamel ablation with less surface morphological alterations. (C) 2007 Wiley Periodicals, Inc. J Biomed Mater Res.