844 resultados para Conductive Silicone Rubber Vulcanizates
Resumo:
Studies on the chemistry of vulcanization” play a central role in the efforts to achieve better product performance from natural and synthetic rubbers. They provide rubber technologists with an increasingly realistic picture of molecular framework of vulcanizates, from which relation between physical properties and chemical constitution may be deduced. Moreover, these studies are also aimed at the understanding of the vulcanization process, in sufficiently advanced chemical mechanistic terms, so that the effect of changes on vulcanizate structure can rationally be predicted.“ The study of accelerator activity ofthe binary system containing ATU with TMTD, and with MBTS in sulphur vulcanization of dry natural rubber using standard procedures for compounding and vulcanization is described in the third chapter. The study of the gum vulcanizates form part I of this chapter The behaviour of the experimental mixes were compared with those of the controls containing thiourea; diphenyl guanidine
Resumo:
The thesis consists of seven chapters. The first chapter is a general introduction on rice by-products, their composition and utilization at present. The different milling processes adopted in paddy and the major by-products obtained from these processes viz. rice husk, rice bran, rice bran oil and rice husk ash are described. The physical properties and chemical composition of the rice husk and its general uses are given in detail. The chemical composition of the rice bran and its separation from paddy is also included. The details of solvent extraction process used for obtaining rice bran oil and also its chemical constitution is discussed in this chapter. Also described is the preparation and the different uses of rice husk ash. A literature survey is also done on the utilization of rice by-products in rubber and plastics as on today. The scope and objectives of the present study is also included at the end of this chapter.
Resumo:
Petroleum, a mixture of organic compounds, comes from underground rock formations ranging in age from ten to several hundred million years. The process by which it is formed and developed is not yet completely known. Studies indicate that petroleum is formed mainly from microscopic-sized marine animals and plants. When these organisms died in water of low oxygen content, they did not decompose. Thus their remains sank to the bottom to be buried under accumulations of sediment. Their conversion to petroleum remains a subject of research even today.
Resumo:
The present study was undertaken to evaluate the effectiveness of a few physico-chemical and biological methods for the treatment of effluents from natural rubber processing units. The overall objective of this study is to evaluate the effectiveness of certain physico-chemical and biological methods for the treatment of effluents from natural rubber processing units. survey of the chemical characteristics of the effluents discharged from rubber processing units showed that the effluents from latex concentration units were the most polluting
Resumo:
The broad objective of the study is to find out the management practices followed in the rubber estates in India. Comparing the management practices followed in the estates belonging to Indian and non-Indian companiess is also an objective. It has been widely held that the management practices followed in the estates belonging to these groups vary considerably. Hence attempt is made to find out the divergence between them in regard to various practices and to identify and bring them into broader relief so that the strong points of each would be emulated by the other. The management practices are examined in the light of well-established management principles and techniques adopted in business and industry. The principles of management which are widely accepted are Planning, Organizing, Staffing, Directing and Controlling. Other management principles and techniques relating to personnel - finance, marketing, materials and transporting - are also examined in the appropriate context
Resumo:
The electrical properties of polymers make up an inherently interdisciplinary topic, being closely associated, on the one hand, with the mechanical properties of polymers polarization and relaxation) and, on the other hand, with the semi conductive properties (conduction and break down). In addition, unlike conventional technologies, which use these properties in its various applications like antistatic coatings, rechargeable batteries, sensors, electrochromic devices, electrochemical devices etc, microwave technology extract the microwave absorbing ability of electrically conducting polymers. The conducting polymers are widely used in its potential applications like electro magnetic interference shielding, satellite communication links, beam steering radars, frequency selective surfaces etc. Considering the relevance of microwave applications of conducting polymers, the study of microwave properties of conducting polymers stands poised to become a compelling choice for synthetic chemists and condensed - matter physicists, physical chemists and material scientists, electrochemists and polymer scientists. The main aim of the present work is to study the microwave and low frequency properties of various conducting polymers, conducting semi-interpenetrating networks, conducting copolymers and to characterise it. Also this thesis collated the microwave properties of these conducting systems and exposes the various technologically important applications in the industrial, scientific, communication and defence applications.
Resumo:
In the present study, the photochemical depolymerisation of NR in toluene, in presence of H202 and a homogenizing solvent (Methanol/Tetrahydro— furan) so as to get hydroxyl terminated liquid natural rubber (HTNR) has been carried out. The copolymeri— sation of this product with butane 1,4 diol and toluene 2,4 diisocyanate in presence of a catalyst, dibutyl tin dilaurate, to produce polyurethanes with HTNR soft segments is also reported. The preparation of block copolymers based on poly(ethylene oxide) with varying molecular weights and HTNR are also discussed along with a detailed study on their thermal and mechanical properties
Resumo:
The primary objective of this work is to develop an efficient accelerator system for low temperature vulcanization of rubbers. Although xanthates are known to act as accelerators for low temperature vulcanization, a systematic study on the mechanism of vulcanization, the mechanical properties of the vulcanizates at varying temperatures of vulcanization, cure characteristics etc are not reported. Further. xanthate based curing systems are not commonly used because of their chance for premature vulcanization during processing. The proposed study is to develop a novel accelerator system for the low temperature vulcanization of rubbers having enough processing safely. lt is also proposed to develop a method for the prevulcanisation of natural rubber latex at room temperature. As already mentioned the manufacture of rubber products at low temperature will improve its quality and appearance. Also, energy consumption can be reduced by low temperature vulcanization. in addition, low temperature vulcanization will be extremely useful in the area of repair of defective products, since subjecting finished products to high temperatures during the process of repair will adversely affect the quality of the product. Further. room temperature curing accelerator systems will find extensive applications in surface coating industries.
Resumo:
Use of short fibers as reinforcing fillers in rubber composites is on an increasing trend. They are popular due to the possibility of obtaining anisotropic properties, ease of processing and economy. In the preparation of these composites short fibers are incorporated on two roll mixing mills or in internal mixers. This is a high energy intensive time consuming process. This calls for developing less energy intensive and less time consuming processes for incorporation and distribution of short fibers in the rubber matrix. One method for this is to incorporate fibers in the latex stage. The present study is primarily to optimize the preparation of short fiber- natural rubber composite by latex stage compounding and to evaluate the resulting composites in terms of mechanical, dynamic mechanical and thermal properties. A synthetic fiber (Nylon) and a natural fiber (Coir) are used to evaluate the advantages of the processing through latex stage. To extract the full reinforcing potential of the coir fibers the macro fibers are converted to micro fibers through chemical and mechanical means. The thesis is presented in 7 chapters
Resumo:
The importance of industrialisation in achiering rapid economic growth has been recognised in India's development strategy ever since the inception of economic planning in the country. Being the secondary sector in the generation of national income. industry contributes significantly to the process of economic development. Extensive debates have taken place on the nature of the industrialisation strategy to be pursued in the economy since Independence. This is reflected in the industrial policy which evolved through the various five year plans and policy resolutions. Stupendous efforts have been made by the government since the commencement of planning and particularly since the 1960s to industrialise the Indian economy and develop the infrastructural base for sustained industrial development. It is difficult to assess the performance of the industrial sector over the past three decades with respect to the broad objectives of industrialisation. However. there are certain areas in which the achievements have been clearly significant.
Resumo:
In the present study, nano particles of NiFe3O4, I_.l()5Feg5O4 and CoFegO4 are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFe3O4 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X — band are also conducted
Resumo:
Many of the existing methods for the treatment of rubber latex centrifugation eflluent are not only unsatisfactory in their efliciency to effect near perfect treatment in bringing down the COD to optimum level, but also time consuming and need a large landspace. As the rate of effluent generation is extremely high (20 litres for kilogram of rubber) there is a need for development of efficient system,capable of rapid reduction of COD and BOD. Though the organic load of the rubber efiluent is very high, it does not contain much processed chemicals and therefore it can be considered as a ‘biological eflluent’. Further, the ratio of the Chemical Oxygen Demand to Biological Oxygen Demand (COD/BOD) of this effluent remain almost as a constant value. According to Montgomery (1967), estimation of BOD is not ideally suited for studies on process design, treatability, control of treatment plants, setting standards for treated effluents and assessing the effect of polluting discharges on the oxygen resources of receiving waters. Hence in the present study COD was measured to determine the impact of treatment system on the effluent. In the present study, attempts were made to evaluate the efficiencies of certain methods such as packed bed reactor using immobilized microbial cells, rotating biological contactor (RBC) and activated sludge process, for rapid and efficient treatment of natural rubber latex centrifugation effluent. In addition, studies were also carn'ed out to develop a suitable bioprocess for the coagulation of skim latex, as an alternative to the presently used acid coagulation process towards reducing the pollution load, besides recovering quality rubber
Resumo:
An Acinetobacter sp, isolated from latex centrifugation effluent, effectively coagulated skim rubber from skim latex. After coagulation for 48 h without the addition of any nutrients, at an optimum dilution of 1:10(v/v) and with an inoculum concentration of 6.4 mg dry cell /ml, the yield of the skim rubber was 8 % (w/v) and the COD of the residual solution was only 0.4 g/l. chemical coagulation at the same dilution resulted in 7 % (w/v) yield of dry rubber content and 2.2 g COD /l.
Resumo:
A novel Acinetobacter sp. BTJR-IO isolated from highly acidic (pH 2.5-4.5) rubber latex centrifugation effluent with high COD (22000 rng/L) and BOD (5000 rng/L). This strain could effect 39.5% COD reduction on free cell inoculation of effluent without incorporation of additional nutrients after 8 days. CalciLnn alginate irrmobilized cells showed 16.4% and 25% COD reduction after 6 hra, without aeration and after 1 hr. with mild aeration under batch process respectively. Whereas 44.0% COD reduction could be achieved after 6 hrs. on continuous treatment in a packed bed reactor with mild aeration. Further, even after 3 cycles 37% COD reduction was recorded with continuous treatment
Resumo:
Prodigiosin is known for its immunomodulatory, antibacterial, antimycotic, antimalarial, algicidal and anticancer activities. Here, we reported the evaluation of prodigiosin pigment as a dyeing agent in rubber latex, paper and polymethyl methacrylate (PMMA) so that it can be considered as an alternative to synthetic pigments. Maximum color shade was obtained in rubber sheet prepared with 0.5 parts per hundred gram of rubber (phr) pigment and PMMA sheet incorporated with 0.08 μg pigment. Results indicate scope for utilization of prodigiosin as dye for PMMA and rubber and also prodigiosin dyed paper as a pH indicator. Further, being a natural and water insoluble pigment, it is ecofriendly