876 resultados para Computer software -- Development
Resumo:
This paper presents how new paradigms and methodologies for software development are changing rapidly in the last two years. In the current scenario where we live on, occurs a transition that, although slight, reflects the rapid manner in which the software production paradigms are reinvented due to the change of display devices and interaction with the end user. Studies indicate that in 2013 was the turn out of the internet access domain for mobile devices over the traditional desktop device, which is currently at around 60% mobile, against 40% desktop. This field will tend to grow in the coming years and it is expected that the use of internet for a desktop terminal tends to be less each day (comScore). In this context, the software industry has been re-invented and updated with respect to technologies that promote software and mobile applications, building products capable of responding to the user market. The development of software products, such as applications, must be put into production for different user environments, such as Web, iOS and Android in a way to enhance efficiency, optimization and productivity in the software development cycle (Langer, Arthur M.).
Resumo:
The primary goals of this study are to: embed sustainable concepts of energy consumption into certain part of existing Computer Science curriculum for English schools; investigate how to motivate 7-to-11 years old kids to learn these concepts; promote responsive ICT (Information and Communications Technology) use by these kids in their daily life; raise their awareness of today’s ecological challenges. Sustainability-related ICT lessons developed aim to provoke computational thinking and creativity to foster understanding of environmental impact of ICT and positive environmental impact of small changes in user energy consumption behaviour. The importance of including sustainability into the Computer Science curriculum is due to the fact that ICT is both a solution and one of the causes of current world ecological problems. This research follows Agile software development methodology. In order to achieve the aforementioned goals, sustainability requirements, curriculum requirements and technical requirements are firstly analysed. Secondly, the web-based user interface is designed. In parallel, a set of three online lessons (video, slideshow and game) is created for the website GreenICTKids.com taking into account several green design patterns. Finally, the evaluation phase involves the collection of adults’ and kids’ feedback on the following: user interface; contents; user interaction; impacts on the kids’ sustainability awareness and on the kids’ behaviour with technologies. In conclusion, a list of research outcomes is as follows: 92% of the adults learnt more about energy consumption; 80% of the kids are motivated to learn about energy consumption and found the website easy to use; 100% of the kids understood the contents and liked website’s visual aspect; 100% of the kids will try to apply in their daily life what they learnt through the online lessons.
Resumo:
A picture tells a thousand words. We all know that. Then why are our development tools showing mainly text with so much obstinacy? Even when visualizations do make it into our tools, they typically do not make it past the periphery. Something is deeply wrong. We argue that visualizations must become pervasive in software development, and to accommodate this goal, the integrated development environments must change significantly.
Resumo:
Scientific research is increasingly data-intensive, relying more and more upon advanced computational resources to be able to answer the questions most pressing to our society at large. This report presents findings from a brief descriptive survey sent to a sample of 342 leading researchers at the University of Washington (UW), Seattle, Washington in 2010 and 2011 as the first stage of the larger National Science Foundation project “Interacting with Cyberinfrastructure in the Face of Changing Science.” This survey assesses these researcher’s use of advanced computational resources, data, and software in their research. We present high-level findings that describe UW researchers’: demographics, interdisciplinarity, research groups, data use, software and computational use—including software development and use, data storage and transfer activities, and collaboration tools, and computing resources. These findings offer insights into the state of computational resources in use during this time period as well as offering a look at the data intensiveness of UW researchers.
Resumo:
Software is an important infrastructural component of scientific research practice. The work of research often requires scientists to develop, use, and share software in order to address their research questions. This report presents findings from a survey of researchers at the University of Washington in three broad areas: Oceanography, Biology, and Physics. This survey is part of the National Science Foundation funded study Scientists and their Software: A Sociotechnical Investigation of Scientific Software Development and Sharing (ACI-1302272). We inquired about each respondent’s research area and data use along with their use, development, and sharing of software. Finally, we asked about challenges researchers face with and about concerns regarding software’s effect on study replicability. These findings are part of ongoing efforts to develop deeper characterizations of the role of software in twenty-first century scientific research.
Resumo:
Timely feedback is a vital component in the learning process. It is especially important for beginner students in Information Technology since many have not yet formed an effective internal model of a computer that they can use to construct viable knowledge. Research has shown that learning efficiency is increased if immediate feedback is provided for students. Automatic analysis of student programs has the potential to provide immediate feedback for students and to assist teaching staff in the marking process. This paper describes a “fill in the gap” programming analysis framework which tests students’ solutions and gives feedback on their correctness, detects logic errors and provides hints on how to fix these errors. Currently, the framework is being used with the Environment for Learning to Programming (ELP) system at Queensland University of Technology (QUT); however, the framework can be integrated into any existing online learning environment or programming Integrated Development Environment (IDE)
Resumo:
Designers need to develop good observational skills in order to conduct user studies that reveal the subtleties of human interactions and adequately inform design activity. In this paper we describe a game format that we have used in concert with wiki-web technology, to engage our IT and Information Environments students in developing much sharper observational skills. The Video Card Game is a method of video analysis that is suited to design practitioners as well as to researchers. It uses the familiar format of a card game similar to "Happy Families,, to help students develop themes of interactions from watching video clips. Students then post their interaction themes on wiki-web pages, which allows the teaching team and other students to edit and comment on them. We found that the tangible (cards), game, role playing and sharing aspects of this method led to a much larger amount of interaction and discussion between student groups and between students and the teaching team, than we have achieved using our traditional teaching methods, while taking no more time on the part of the teaching staff. The quality of the resulting interaction themes indicates that this method fosters development of observational skills.In the paper we describe the motivations, method and results in full. We also describe the research context in which we collected the videotape data, and how this method relates to state of the art research methods in interaction design for ubiquitous computing technology.
Resumo:
Building Information Model (BIM) software, collaboration platforms and 5D Construction Management software is now commercially available and presents the opportunity for construction project teams to design more cost effectively, plan construction earlier, manage costs throughout the life cycle of a building project and provide a central asset management register for facilities managers. This paper outlines the merits of taking a holistic view of ICT in curriculum design. The educational barriers to implementation of these models and planning tools are highlighted. Careful choice of computer software can make a significant difference to how quickly students can master skills; how easy it is to study and how much they enjoy learning and be prepared for employment. An argument for BIM and 5D planning tools to be introduced into the curriculum to assist industry increase productivity and efficiencies are outlined by the authors.
Resumo:
Alvin Toffler’s image of the prosumer (1970, 1980, 1990) continues to influence in a significant way our understanding of the user-led, collaborative processes of content creation which are today labelled “social media” or “Web 2.0”. A closer look at Toffler’s own description of his prosumer model reveals, however, that it remains firmly grounded in the mass media age: the prosumer is clearly not the self-motivated creative originator and developer of new content which can today be observed in projects ranging from open source software through Wikipedia to Second Life, but simply a particularly well-informed, and therefore both particularly critical and particularly active, consumer. The highly specialised, high end consumers which exist in areas such as hi-fi or car culture are far more representative of the ideal prosumer than the participants in non-commercial (or as yet non-commercial) collaborative projects. And to expect Toffler’s 1970s model of the prosumer to describe these 21st-century phenomena was always an unrealistic expectation, of course. To describe the creative and collaborative participation which today characterises user-led projects such as Wikipedia, terms such as ‘production’ and ‘consumption’ are no longer particularly useful – even in laboured constructions such as ‘commons-based peer-production’ (Benkler 2006) or ‘p2p production’ (Bauwens 2005). In the user communities participating in such forms of content creation, roles as consumers and users have long begun to be inextricably interwoven with those as producer and creator: users are always already also able to be producers of the shared information collection, regardless of whether they are aware of that fact – they have taken on a new, hybrid role which may be best described as that of a produser (Bruns 2008). Projects which build on such produsage can be found in areas from open source software development through citizen journalism to Wikipedia, and beyond this also in multi-user online computer games, filesharing, and even in communities collaborating on the design of material goods. While addressing a range of different challenges, they nonetheless build on a small number of universal key principles. This paper documents these principles and indicates the possible implications of this transition from production and prosumption to produsage.
Resumo:
The SoundCipher software library provides an easy way to create music in the Processing development environment. With the SoundCipher library added to Processing you can write software programs that make music to go along with your graphics and you can add sounds to enhance your Processing animations or games. SoundCipher provides an easy interface for playing 'notes' on the JavaSound synthesizer, for playback of audio files, and comunicating via MIDI. It provides accurate scheduling and allows events to be organised in musical time; using beats and tempo. It uses a 'score' metaphor that allows the construction of simple or complex musical arrangements. SoundCipher is designed to facilitate the basics of algorithmic music and interactive sound design as well as providing a platform for sophisticated computational music, it allows integration with the Minim library when more sophisticated audio and synthesis functionality is required and integration with the oscP5 library for communicating via open sound control.
Resumo:
Patent systems around the world are being pressed to recognise and protect challengingly new and exciting subject matter in order to keep pace with the rapid technological advancement of our age and the fact we are moving into the era of the ‘knowledge economy’. This rapid development and pressure to expand the bounds of what has traditionally been recognised as patentable subject matter has created uncertainty regarding what it is that the patent system is actually supposed to protect. Among other things, the patent system has had to contend with uncertainty surrounding claims to horticultural and agricultural methods, artificial living micro-organisms, methods of treating the human body, computer software and business methods. The contentious issue of the moment is one at whose heart lies the important distinction between what is a mere abstract idea and what is properly an invention deserving of the monopoly protection afforded by a patent. That question is whether purely intangible inventions, being methods that do not involve a physical aspect or effect or cause a physical transformation of matter, constitute patentable subject matter. This paper goes some way to addressing these uncertainties by considering how the Australian approach to the question can be informed by developments arising in the United States of America, and canvassing some of the possible lessons we in Australia might learn from the approaches taken thus far in the United States.
Resumo:
Schizophrenia is a mental disorder affecting 1-2% of the population and it is estimated 12-16% of hospital beds in Australia are occupied by patients with psychosis. The suicide rate for patients with this diagnosis is higher than that of the general population. Any technique which enhances training and treatment of this disorder will have a significant societal and economic impact. A significant research project using Virtual Reality (VR), in which both visual and auditory hallucinations are simulated, is currently being undertaken at the University of Queensland. The virtual environments created by the new software are expected to enhance the experiential learning outcomes of medical students by enabling them to experience the inner world of a patient with psychosis. In addition the Virtual Environment has the potential to provide a technologically advanced therapeutic setting where behavioral, exposure therapies can be conducted with exactly controlled exposure stimuli with an expected reduction in risk of harm. This paper reports on the current work of the project, previous stages of software development and future educational and clinical applications of the Virtual Environments. (C) 2004 Elsevier Ltd. All rights reserved.