873 resultados para Computer Aided Engineering and Design
Resumo:
Genome sequences from many organisms, including humans, have been completed, and high-throughput analyses have produced burgeoning volumes of 'omics' data. Bioinformatics is crucial for the management and analysis of such data and is increasingly used to accelerate progress in a wide variety of large-scale and object-specific functional analyses. Refined algorithms enable biotechnologists to follow 'computer-aided strategies' based on experiments driven by high-confidence predictions. In order to address compound problems, current efforts in immuno-informatics and reverse vaccinology are aimed at developing and tuning integrative approaches and user-friendly, automated bioinformatics environments. This will herald a move to 'computer-aided biotechnology': smart projects in which time-consuming and expensive large-scale experimental approaches are progressively replaced by prediction-driven investigations.
Resumo:
The manufacture of copper alloy flat rolled metals involves hot and cold rolling operations, together with annealing and other secondary processes, to transform castings (mainly slabs and cakes) into such shapes as strip, plate, sheet, etc. Production is mainly to customer orders in a wide range of specifications for dimensions and properties. However, order quantities are often small and so process planning plays an important role in this industry. Much research work has been done in the past in relation to the technology of flat rolling and the details of the operations, however, there is little or no evidence of any research in the planning of processes for this type of manufacture. Practical observation in a number of rolling mills has established the type of manual process planning traditionally used in this industry. This manual approach, however, has inherent drawbacks, being particularly dependent on the individual planners who gain their knowledge over a long span of practical experience. The introduction of the retrieval CAPP approach to this industry was a first step to reduce these problems. But this could not provide a long-term answer because of the need for an experienced planner to supervise generation of any plan. It also fails to take account of the dynamic nature of the parameters involved in the planning, such as the availability of resources, operation conditions and variations in the costs. The other alternative is the use of a generative approach to planning in the rolling mill context. In this thesis, generative methods are developed for the selection of optimal routes for single orders and then for batches of orders, bearing in mind equipment restrictions, production costs and material yield. The batch order process planning involves the use of a special cluster analysis algorithm for optimal grouping of the orders. This research concentrates on cold-rolling operations. A prototype model of the proposed CAPP system, including both single order and batch order planning options, has been developed and tested on real order data in the industry. The results were satisfactory and compared very favourably with the existing manual and retrieval methods.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This article categorises manufacturing strategy design processes and presents the characteristics of resulting strategies. This work will therefore assist practitioners to appreciate the implications of planning activities. The article presents a framework for classifying manufacturing strategy processes and the resulting strategies. Each process and respective strategy is then considered in detail. In this consideration the preferred approach is presented for formulating a world class manufacturing strategy. Finally, conclusions and recommendations for further work are given.
Resumo:
The thesis presents a theoretical and practical study of the dynamic behaviour of electromagnetic relays. After discussing the problem of solving the dynamicc equations analytically and presenting a historical survey of the earlier works in the relay and its dynamics, the simulation of a relay on the analogue computer is discussed. It is shown that the simulation may be used to obtain specific solutions to the dynamic equations. The computer analysis provides the dynamic characteristics for design purposes and may be used in the study of bouncing, rebound oscillations and stability of the armature motion. An approximate analytical solution to the two dynamic equations is given based on the assumption that the dynamic variation of the pull with the position of the armature is linear. The assumption is supported by the Computer-aided analysis and experimental results. The solution is intended to provide a basis for a rational design. A rigorous method of analysing the dynamic performance by using Ahlberg's theory is also presented. This method may be justified to be the extension of Ahlberg's theory by taking the mass and frictional damping forces into account. While calculating the armature motion mathematically, Ahlberg considers the equilibrium of two kinds of forces, namely pull and load, and disregards the mass and friction forces, whereas the present method deals with the equilibrium of all four kinds of forces. It is shown how this can be utilised to calculate the dynamic characteristics for a specific design. The utility of this method also extends to the study of stability, contact bounce and armature rebound. The magnetic circuit and other related topics which are essential to the study of relay dynamics are discussed and some necessary experimental results are given.
Resumo:
Methodology of computer-aided investigation and provision of safety for complex constructions and a prototype of the intelligent applied system, which implements it, are considered. The methodology is determined by the model of the object under scrutiny, by the structure and functions of investigation of safety as well as by a set of research methods. The methods are based on the technologies of object-oriented databases, expert systems and on the mathematical modeling. The intelligent system’s prototype represents component software, which provides for support of decision making in the process of safety investigations and investigation of the cause of failure. Support of decision making is executed by analogy, by determined search for the precedents (cases) with respect to predicted (on the stage of design) and observed (on the stage of exploitation) parameters of the damage, destruction and malfunction of a complex hazardous construction.
Resumo:
The desire to create unique things and give free rain to one's imagination served as a powerful impetus to the development of digital art and design software. The commoner was the use of computers the wider variety of professional software was developed. Nowadays the creators and computer designers are receiving more and more new and advanced programs that allow their ideas becoming virtual reality. This research paper looks at the history of the development of graphic editors from the simplest to the most modern and advanced. This brief survey includes the history of different graphic editors’ creation, their features and abilities. This paper highlights the two basic branches of graphic editors – these that are in free use and commercial graphic editors design software. The researcher selected the most powerful and influential graphic editors design software brands like Paint.NET and GIMP among free software and commercial Adobe Photoshop. This paper also dwells upon the way digital art transferred from the exclusively professional business into the hobby for ordinary users. This research paper bears implications for those who are interested in features and potentiality of most popular graphic editors design software.
Resumo:
The automotive industry combines a multitude of professionals to develop a modern car successfully. Within the design and development teams the collaboration and interface between Engineers and Designers is critical to ensure design intent is communicated and maintained throughout the development process. This study highlights recent industry practice with the emergence of Concept Engineers in design teams at Jaguar Land Rover Automotive group. The role of the Concept Engineer emphasises the importance of the Engineering and Design/Styling interface with the Concept engineer able to interact and understand the challenges and specific languages of each specialist area, hence improving efficiency and communication within the design team. Automotive education tends to approach design from two distinct directions, that of engineering design through BSc courses or a more styling design approach through BA and BDes routes. The educational challenge for both types of course is to develop engineers and stylist's who have greater understanding and experience of each other's specialist perspective of design and development. The study gives examples of two such courses in the UK who are developing programmes to help students widen their understanding of the engineering and design spectrum. Initial results suggest the practical approach has been well received by students and encouraged by industry as they seek graduates with specialist knowledge but also a wider appreciation of their role within the design process.
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown to play a role. 75% of prosthesis with high femoral head-trunnion offset exhibited poor performance compared to 15% with a low offset. Large femoral heads (>32mm) did not exhibit poor corrosion or fretting. Implantation time was not sufficient to cause poor performance; 54% of prosthesis with greater than 10 years in-vivo demonstrated none or mild corrosion/fretting.