928 resultados para Computational Intelligence System
Resumo:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.
Resumo:
Esta Tesis aborda los problemas de eficiencia de las redes eléctrica desde el punto de vista del consumo. En particular, dicha eficiencia es mejorada mediante el suavizado de la curva de consumo agregado. Este objetivo de suavizado de consumo implica dos grandes mejoras en el uso de las redes eléctricas: i) a corto plazo, un mejor uso de la infraestructura existente y ii) a largo plazo, la reducción de la infraestructura necesaria para suplir las mismas necesidades energéticas. Además, esta Tesis se enfrenta a un nuevo paradigma energético, donde la presencia de generación distribuida está muy extendida en las redes eléctricas, en particular, la generación fotovoltaica (FV). Este tipo de fuente energética afecta al funcionamiento de la red, incrementando su variabilidad. Esto implica que altas tasas de penetración de electricidad de origen fotovoltaico es perjudicial para la estabilidad de la red eléctrica. Esta Tesis trata de suavizar la curva de consumo agregado considerando esta fuente energética. Por lo tanto, no sólo se mejora la eficiencia de la red eléctrica, sino que también puede ser aumentada la penetración de electricidad de origen fotovoltaico en la red. Esta propuesta conlleva grandes beneficios en los campos económicos, social y ambiental. Las acciones que influyen en el modo en que los consumidores hacen uso de la electricidad con el objetivo producir un ahorro energético o un aumento de eficiencia son llamadas Gestión de la Demanda Eléctrica (GDE). Esta Tesis propone dos algoritmos de GDE diferentes para cumplir con el objetivo de suavizado de la curva de consumo agregado. La diferencia entre ambos algoritmos de GDE reside en el marco en el cual estos tienen lugar: el marco local y el marco de red. Dependiendo de este marco de GDE, el objetivo energético y la forma en la que se alcanza este objetivo son diferentes. En el marco local, el algoritmo de GDE sólo usa información local. Este no tiene en cuenta a otros consumidores o a la curva de consumo agregado de la red eléctrica. Aunque esta afirmación pueda diferir de la definición general de GDE, esta vuelve a tomar sentido en instalaciones locales equipadas con Recursos Energéticos Distribuidos (REDs). En este caso, la GDE está enfocada en la maximización del uso de la energía local, reduciéndose la dependencia con la red. El algoritmo de GDE propuesto mejora significativamente el auto-consumo del generador FV local. Experimentos simulados y reales muestran que el auto-consumo es una importante estrategia de gestión energética, reduciendo el transporte de electricidad y alentando al usuario a controlar su comportamiento energético. Sin embargo, a pesar de todas las ventajas del aumento de auto-consumo, éstas no contribuyen al suavizado del consumo agregado. Se han estudiado los efectos de las instalaciones locales en la red eléctrica cuando el algoritmo de GDE está enfocado en el aumento del auto-consumo. Este enfoque puede tener efectos no deseados, incrementando la variabilidad en el consumo agregado en vez de reducirlo. Este efecto se produce porque el algoritmo de GDE sólo considera variables locales en el marco local. Los resultados sugieren que se requiere una coordinación entre las instalaciones. A través de esta coordinación, el consumo debe ser modificado teniendo en cuenta otros elementos de la red y buscando el suavizado del consumo agregado. En el marco de la red, el algoritmo de GDE tiene en cuenta tanto información local como de la red eléctrica. En esta Tesis se ha desarrollado un algoritmo autoorganizado para controlar el consumo de la red eléctrica de manera distribuida. El objetivo de este algoritmo es el suavizado del consumo agregado, como en las implementaciones clásicas de GDE. El enfoque distribuido significa que la GDE se realiza desde el lado de los consumidores sin seguir órdenes directas emitidas por una entidad central. Por lo tanto, esta Tesis propone una estructura de gestión paralela en lugar de una jerárquica como en las redes eléctricas clásicas. Esto implica que se requiere un mecanismo de coordinación entre instalaciones. Esta Tesis pretende minimizar la cantidad de información necesaria para esta coordinación. Para lograr este objetivo, se han utilizado dos técnicas de coordinación colectiva: osciladores acoplados e inteligencia de enjambre. La combinación de estas técnicas para llevar a cabo la coordinación de un sistema con las características de la red eléctrica es en sí mismo un enfoque novedoso. Por lo tanto, este objetivo de coordinación no es sólo una contribución en el campo de la gestión energética, sino también en el campo de los sistemas colectivos. Los resultados muestran que el algoritmo de GDE propuesto reduce la diferencia entre máximos y mínimos de la red eléctrica en proporción a la cantidad de energía controlada por el algoritmo. Por lo tanto, conforme mayor es la cantidad de energía controlada por el algoritmo, mayor es la mejora de eficiencia en la red eléctrica. Además de las ventajas resultantes del suavizado del consumo agregado, otras ventajas surgen de la solución distribuida seguida en esta Tesis. Estas ventajas se resumen en las siguientes características del algoritmo de GDE propuesto: • Robustez: en un sistema centralizado, un fallo o rotura del nodo central provoca un mal funcionamiento de todo el sistema. La gestión de una red desde un punto de vista distribuido implica que no existe un nodo de control central. Un fallo en cualquier instalación no afecta el funcionamiento global de la red. • Privacidad de datos: el uso de una topología distribuida causa de que no hay un nodo central con información sensible de todos los consumidores. Esta Tesis va más allá y el algoritmo propuesto de GDE no utiliza información específica acerca de los comportamientos de los consumidores, siendo la coordinación entre las instalaciones completamente anónimos. • Escalabilidad: el algoritmo propuesto de GDE opera con cualquier número de instalaciones. Esto implica que se permite la incorporación de nuevas instalaciones sin afectar a su funcionamiento. • Bajo coste: el algoritmo de GDE propuesto se adapta a las redes actuales sin requisitos topológicos. Además, todas las instalaciones calculan su propia gestión con un bajo requerimiento computacional. Por lo tanto, no se requiere un nodo central con un alto poder de cómputo. • Rápido despliegue: las características de escalabilidad y bajo coste de los algoritmos de GDE propuestos permiten una implementación rápida. No se requiere una planificación compleja para el despliegue de este sistema. ABSTRACT This Thesis addresses the efficiency problems of the electrical grids from the consumption point of view. In particular, such efficiency is improved by means of the aggregated consumption smoothing. This objective of consumption smoothing entails two major improvements in the use of electrical grids: i) in the short term, a better use of the existing infrastructure and ii) in long term, the reduction of the required infrastructure to supply the same energy needs. In addition, this Thesis faces a new energy paradigm, where the presence of distributed generation is widespread over the electrical grids, in particular, the Photovoltaic (PV) generation. This kind of energy source affects to the operation of the grid by increasing its variability. This implies that a high penetration rate of photovoltaic electricity is pernicious for the electrical grid stability. This Thesis seeks to smooth the aggregated consumption considering this energy source. Therefore, not only the efficiency of the electrical grid is improved, but also the penetration of photovoltaic electricity into the grid can be increased. This proposal brings great benefits in the economic, social and environmental fields. The actions that influence the way that consumers use electricity in order to achieve energy savings or higher efficiency in energy use are called Demand-Side Management (DSM). This Thesis proposes two different DSM algorithms to meet the aggregated consumption smoothing objective. The difference between both DSM algorithms lie in the framework in which they take place: the local framework and the grid framework. Depending on the DSM framework, the energy goal and the procedure to reach this goal are different. In the local framework, the DSM algorithm only uses local information. It does not take into account other consumers or the aggregated consumption of the electrical grid. Although this statement may differ from the general definition of DSM, it makes sense in local facilities equipped with Distributed Energy Resources (DERs). In this case, the DSM is focused on the maximization of the local energy use, reducing the grid dependence. The proposed DSM algorithm significantly improves the self-consumption of the local PV generator. Simulated and real experiments show that self-consumption serves as an important energy management strategy, reducing the electricity transport and encouraging the user to control his energy behavior. However, despite all the advantages of the self-consumption increase, they do not contribute to the smooth of the aggregated consumption. The effects of the local facilities on the electrical grid are studied when the DSM algorithm is focused on self-consumption maximization. This approach may have undesirable effects, increasing the variability in the aggregated consumption instead of reducing it. This effect occurs because the algorithm only considers local variables in the local framework. The results suggest that coordination between these facilities is required. Through this coordination, the consumption should be modified by taking into account other elements of the grid and seeking for an aggregated consumption smoothing. In the grid framework, the DSM algorithm takes into account both local and grid information. This Thesis develops a self-organized algorithm to manage the consumption of an electrical grid in a distributed way. The goal of this algorithm is the aggregated consumption smoothing, as the classical DSM implementations. The distributed approach means that the DSM is performed from the consumers side without following direct commands issued by a central entity. Therefore, this Thesis proposes a parallel management structure rather than a hierarchical one as in the classical electrical grids. This implies that a coordination mechanism between facilities is required. This Thesis seeks for minimizing the amount of information necessary for this coordination. To achieve this objective, two collective coordination techniques have been used: coupled oscillators and swarm intelligence. The combination of these techniques to perform the coordination of a system with the characteristics of the electric grid is itself a novel approach. Therefore, this coordination objective is not only a contribution in the energy management field, but in the collective systems too. Results show that the proposed DSM algorithm reduces the difference between the maximums and minimums of the electrical grid proportionally to the amount of energy controlled by the system. Thus, the greater the amount of energy controlled by the algorithm, the greater the improvement of the efficiency of the electrical grid. In addition to the advantages resulting from the smoothing of the aggregated consumption, other advantages arise from the distributed approach followed in this Thesis. These advantages are summarized in the following features of the proposed DSM algorithm: • Robustness: in a centralized system, a failure or breakage of the central node causes a malfunction of the whole system. The management of a grid from a distributed point of view implies that there is not a central control node. A failure in any facility does not affect the overall operation of the grid. • Data privacy: the use of a distributed topology causes that there is not a central node with sensitive information of all consumers. This Thesis goes a step further and the proposed DSM algorithm does not use specific information about the consumer behaviors, being the coordination between facilities completely anonymous. • Scalability: the proposed DSM algorithm operates with any number of facilities. This implies that it allows the incorporation of new facilities without affecting its operation. • Low cost: the proposed DSM algorithm adapts to the current grids without any topological requirements. In addition, every facility calculates its own management with low computational requirements. Thus, a central computational node with a high computational power is not required. • Quick deployment: the scalability and low cost features of the proposed DSM algorithms allow a quick deployment. A complex schedule of the deployment of this system is not required.
Resumo:
Experimental diffusion data were critically assessed to develop the atomic mobility for the bcc phase of the Ti–Al–Fe system by using the DICTRA software. Good agreements were obtained from comprehensive comparisons made between the calculated and the experimental diffusion coefficients. The developed atomic mobility was then validated by well predicting the interdiffusion behavior observed from the diffusion-couple experiments in available literature.
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
This paper presents an approach to the belief system based on a computational framework in three levels: first, the logic level with the definition of binary local rules, second, the arithmetic level with the definition of recursive functions and finally the behavioural level with the definition of a recursive construction pattern. Social communication is achieved when different beliefs are expressed, modified, propagated and shared through social nets. This approach is useful to mimic the belief system because the defined functions provide different ways to process the same incoming information as well as a means to propagate it. Our model also provides a means to cross different beliefs so, any incoming information can be processed many times by the same or different functions as it occurs is social nets.
Resumo:
In this article we present a model of organization of a belief system based on a set of binary recursive functions that characterize the dynamic context that modifies the beliefs. The initial beliefs are modeled by a set of two-bit words that grow, update, and generate other beliefs as the different experiences of the dynamic context appear. Reason is presented as an emergent effect of the experience on the beliefs. The system presents a layered structure that allows a functional organization of the belief system. Our approach seems suitable to model different ways of thinking and to apply to different realistic scenarios such as ideologies.
Resumo:
Bibliography: p. 84-85.
Resumo:
Vita.
Resumo:
The paper presents a computational system based upon formal principles to run spatial models for environmental processes. The simulator is named SimuMap because it is typically used to simulate spatial processes over a mapped representation of terrain. A model is formally represented in SimuMap as a set of coupled sub-models. The paper considers the situation where spatial processes operate at different time levels, but are still integrated. An example of such a situation commonly occurs in watershed hydrology where overland flow and stream channel flow have very different flow rates but are highly related as they are subject to the same terrain runoff processes. SimuMap is able to run a network of sub-models that express different time-space derivatives for water flow processes. Sub-models may be coded generically with a map algebra programming language that uses a surface data model. To address the problem of differing time levels in simulation, the paper: (i) reviews general approaches for numerical solvers, (ii) considers the constraints that need to be enforced to use more adaptive time steps in discrete time specified simulations, and (iii) scaling transfer rates in equations that use different time bases for time-space derivatives. A multistep scheme is proposed for SimuMap. This is presented along with a description of its visual programming interface, its modelling formalisms and future plans. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.
Resumo:
MULTIPRED is a web-based computational system for the prediction of peptide binding to multiple molecules ( proteins) belonging to human leukocyte antigens (HLA) class I A2, A3 and class II DR supertypes. It uses hidden Markov models and artificial neural network methods as predictive engines. A novel data representation method enables MULTIPRED to predict peptides that promiscuously bind multiple HLA alleles within one HLA supertype. Extensive testing was performed for validation of the prediction models. Testing results show that MULTIPRED is both sensitive and specific and it has good predictive ability ( area under the receiver operating characteristic curve A(ROC) > 0.80). MULTIPRED can be used for the mapping of promiscuous T-cell epitopes as well as the regions of high concentration of these targets termed T-cell epitope hotspots. MULTIPRED is available at http:// antigen.i2r.a-star.edu.sg/ multipred/.
Resumo:
The purpose of this research is to propose a procurement system across other disciplines and retrieved information with relevant parties so as to have a better co-ordination between supply and demand sides. This paper demonstrates how to analyze the data with an agent-based procurement system (APS) to re-engineer and improve the existing procurement process. The intelligence agents take the responsibility of searching the potential suppliers, negotiation with the short-listed suppliers and evaluating the performance of suppliers based on the selection criteria with mathematical model. Manufacturing firms and trading companies spend more than half of their sales dollar in the purchase of raw material and components. Efficient data collection with high accuracy is one of the key success factors to generate quality procurement which is to purchasing right material at right quality from right suppliers. In general, the enterprises spend a significant amount of resources on data collection and storage, but too little on facilitating data analysis and sharing. To validate the feasibility of the approach, a case study on a manufacturing small and medium-sized enterprise (SME) has been conducted. APS supports the data and information analyzing technique to facilitate the decision making such that the agent can enhance the negotiation and suppler evaluation efficiency by saving time and cost.
Resumo:
In this paper the main problems for computer design of materials, which would have predefined properties, with the use of artificial intelligence methods are presented. The DB on inorganic compound properties and the system of DBs on materials for electronics with completely assessed information: phase diagram DB of material systems with semiconducting phases and DB on acousto-optical, electro-optical, and nonlinear optical properties are considered. These DBs are a source of information for data analysis. Using the DBs and artificial intelligence methods we have predicted thousands of new compounds in ternary, quaternary and more complicated chemical systems and estimated some of their properties (crystal structure type, melting point, homogeneity region etc.). The comparison of our predictions with experimental data, obtained later, showed that the average reliability of predicted inorganic compounds exceeds 80%. The perspectives of computational material design with the use of artificial intelligence methods are considered.
Resumo:
Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.