977 resultados para Compsus sp.
Resumo:
Microcystins are heptapeptide toxins produced by cyanobacteria. Microcystin-RR(MC-RR) is a common variant among the 80 variants identified so far. There have been many investigations documenting the toxic effects of microcystins on animals and higher plants, but little is known on the toxic effects of microcystins on algae, especially at molecular level. We studied the effects of MC-RR on gene expression profile of a few antioxidant enzymes and heat shock protein-70 (Hsp70) in Synechocystis sp. PCC6803. After two days post-exposure, a high dose toxin (5 mg/l, about 4.8 x 10(-3) mM) significantly increased expression levels of the genes gpx1, sodB, katG, acnB, gamma-TMTand dnaK2, while a relatively low dose toxin (1 mg/l, about 9.63 x 10(-4) mM) induced a moderate and slow increase of gene expression. Our results indicate that MC-RR could induce the oxidative stress in Synechocystis sp. PCC6803 and the increase in gene expression of antioxidant enzymes and Hsp70 might protect the organism from the oxidative damage. in addition, cell aggregation was observed during the early period of exposure, which might be a specific oxidative stress reaction to MC-RR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A vipp1 mutant of Synechocystis sp. PCC 6803 could not be completely segregated under either mixotrophic or heterotrophic conditions. A vipp1 gene with a copper-regulated promoter (P-petE-vipp1) was integrated into a neutral platform in the genome of the merodiploid mutant. The copper-induced expression of P-petE-vipp1 allowed a complete segregation of the vipp1 mutant and observation of the phenotype of Synechocystis 6803 with different levels of vesicle-inducing protein in plastids 1 (Vipp1). When P-petE-vipp1 was turned off by copper deprivation, Synechocystis lost Vipp1 and photosynthetic activity almost simultaneously, and at a later stage, thylakoid membranes and cell viability. The photosystem II (PSII)-mediated electron transfer was much more rapidly reduced than the PSI-mediated electron transfer. By testing a series of concentrations, we found that P-petE-vipp1 cells grown in medium with 0.025 mu M Cu2+ showed no reduction of thylakoid membranes, but greatly reduced photosynthetic activity and viability. These results suggested that in contrast to a previous report, the loss of photosynthetic activity may not have been due to the loss of thylakoid membranes, but may have been caused more directly by the loss of Vipp1 in Synechocystis 6803.
Resumo:
The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.
Resumo:
A new freshwater phototrophic species of the dinoflagellate genus Peridiniopsis, P. niei sp. nov., is described based on morphology. The new species appeared during spring with densities up to 1.48 x 10(7) cells L-1 in some tributaries and gullies of Three Gorge Reservoir and Lake Donghu, China, forming red tides. Peridiniopsis niei is a cyst-producing freshwater dinoflagellate that belongs to the group Penardii. The plate tabulation is po+x+4 '+0a+6 ''+5c+5s+5 '''+2 '''' and the plate pattern is symmetric. The cells of P. niei are pentagonal in ventral view, the epitheca is larger than the hypotheca, making up about 2/3 the length of the cell. Plate 3 ' is hexangular. The closest species to P. niei is P. penardii (Lemmermann) Bourrelly, but cells of the former are pentagonal, very compressed dorsoventrally, and the hypotheca is truncated with one transparent, robust spine on each antapical plate.
Resumo:
Fridericia dianchiensis, a new enchytraeid species collected from Yunnan Province, is described here. It is characterized by a combination of the following characters: 1) lateral bundles containing maximum 3 chaetae; 2) esophageal appendages with 3-4 simple, terminal branches; 3) dorsal vessel originating in XX-XXIII; 4) sub-neural glands absent; 5) seminal vesicle large, occupying two segments; 6)clitellum girdle-shaped or gland cells absent between bursal slits and pre-middle ventrally; 7) coelomocytes without refractile vesicles, 8) spermatheca without diverticula and both ampullae broadly united; and 9) long spermathecal ectal duct without gland at the orifice.
Resumo:
From a random insertion mutant library of Synechocystis sp. PCC 6803, a mutant defective in photoautotrophic growth was obtained. The interrupted gene was identified to be slr2094 (rbpl), which encodes the fructose-1,6-biphosphatase (FBPase)/sedoheptulose-1,7-biphosphatase (SBPase) bifunctional enzyme (F-I). Two other independently constructed slr2094 mutants showed an identical phenotype. The FBPase activity was found to be virtually lacking in an slr2094 mutant, which was sensitive to light under mixotrophic growth conditions. These results indicate that slr2094 is the only active FBPase-encoding gene in this cyanobacterium. Inactivation of photosystem II by interrupting psbB in slr2094 mutant alleviated the sensitiveness to light. This report provides the direct genetic evidence for the essential role of F-I in the photosynthesis of Synechocystis sp. PCC 6803. (c) 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Two ciliated protozoa, Balantidium sinensis Nie 1935 and Balantidium andianusi n. sp., were isolated from the feces of a wild Chinese giant salamander (Andrias davidianus) captured from the mountainous area of Shiyan, Hubei Province, Central China in October 2006. It is the first report of Balantidium species inhabiting Cryptobranchoidea amphibians. The occurrence of B. sinensis in A. davidianus should be a new record because the type specimens were first discovered and named by Nie in 1935 from Rana nigromaculata and Rana plancyi. For the lack of enough descriptions of taxonomic features in the previous report, it was re-described in detail and compared with Nie's type specimens and B. giganteum to complete the morphological descriptions in the present work. B. andianusi n. sp. was considered to be a new species based on its unique morphological characteristics, especially the high length/width ratio of the vestibulum (8:1). Comparisons were also made among Balantidium species that were found from urodele amphibians.
Resumo:
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5 degrees C) in the dark but rapidly losses viability when exposed to chill in the light (100 mu mol photons m(-2) s(-1)). Preconditioning at a low temperature (15 degrees C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of alpha-tocopherol after exposure to chill-light stress. Mutants unable to synthesize alpha-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from P-petE controlled the level of et-tocopherol and ACLT. We conclude that alpha-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of a-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.
Resumo:
In this study, we found that UV-B radiation decreased photosynthetic activity and boosted lipid peroxidation of desert Nostoc sp., and exogenous chemicals (ascorbate acid (ASC), N-acetylcysteine (NAC), and sodium nitroprusside (SNP)) had obvious protective effects on photosynthesis and membranes under UV-B radiation. High-concentration SNP boosted the activities of antioxidant enzymes, but low-concentration SNP reduced the activities of antioxidant enzymes. Both NAC and ASC treatments of cells decreased activities of antioxidant enzymes. The results suggested that those chemicals possibly had different mechanisms of protection of algae cells against UV-B radiation. SNP might play double roles as a signal molecule in the formation of algae cell protection of Photosystem 11 under UV-B radiation and as a (reactive oxygen species) scavenger, while NAC and ASC might function as antioxidant reagents or precursors of other antioxidant molecules, which could protect cells directly against ROS initiated by UV-B radiation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Wild-type Anabaena sp. strain PCC 7120, a filamentous nitrogen-fixing cyanobacterium, produces single heterocysts at semi-regular intervals. asr0100 (patU5) and alr0101 (patU3) are homologous to the 5' and 3' portions of patU of Nostoc punctiforme. alr0099 (hetZ) overlaps the 5' end of patU5. hetZ, patU5 and patU3 were all upregulated, or expressed specifically, in proheterocysts and heterocysts. Mutants of hetZ showed delayed or no heterocyst differentiation. In contrast, a patU3 mutation produced a multiple contiguous heterocyst (Mch) phenotype and restored the formation of otherwise lost intercalary heterocysts in a patA background. Decreasing the expression of patU3 greatly increased the frequency of heterocysts in a mini-patS strain. Two promoter regions and two principal, corresponding transcripts were detected in the hetZ-patU5-patU3 region. Transcription of hetZ was upregulated in a hetZ mutant and downregulated in a patU3 mutant. When mutants hetZ::C.K2 and hetZ::Tn5-1087b were nitrogen-deprived, P-hetC-gfp was very weakly expressed, and in hetZ::Tn5-1087b, P-hetR-gfp was relatively strongly expressed in cells that had neither a regular pattern nor altered morphology. We conclude that the hetZ-patU5-patU3 cluster plays an important role in co-ordination of heterocyst differentiation and pattern formation. The presence of homologous clusters in filamentous genera without heterocysts is suggestive of a more general role.
Resumo:
Halophage SNJ1 was induced with mitomycin C from Natrinema sp. strain F5. The phage produces plaques on Natrinema sp. strain J7 only. The phage has a head of about 67 nm in diameter and a tail of 570 nm in length and belongs morphologically to the family Siphoviridae. The phage is strongly salt dependent; NaCl concentration affects the integrity of SNJ1, phage adsorption, and plaque formation. The optimal NaCl concentration for phage adsorption and plaque formation is 30% and 25%, respectively.
Resumo:
During maturation, heterocysts form an envelope layer of polysaccharide, called heterocyst envelope polysaccharide (HEP), whose synthesis depends on a cluster of genes, the HEP island, and on an additional, distant gene, hepB, or a gene immediately downstream from hepB. We show that HEP formation depends upon the predicted glycosyl transferase genes all4160 at a third locus and alr3699, which is adjacent to hepB and is cotranscribed with it. Mutations in the histidine kinase genes hepN and hepK appear to silence the promoter of hepB and incompletely down-regulate all4160.
Resumo:
Synechocystis sp. PCC 6803 exposed to chill (5 degrees C)-light (100 mu mol photons m(-2) s(-1)) stress loses its ability to reinitiate growth. From a random insertion mutant library of Synechocystis sp. PCC 6803, a sll1242 mutant showing increased sensitivity to chill plus light was isolated. Mutant reconstruction and complementation with the wild-type gene confirmed the role of sll1242 in maintaining chill-light tolerance. At 15 degrees C, the autotrophic and mixotrophic growth of the mutant were both inhibited, paralleled by decreased photosynthetic activity. The expression of sll1242 was upregulated in Synechocystis sp. PCC 6803 after transfer from 30 to 15 degrees C at a photosynthetic photon flux density of 30 mu mol photons m(-2) S-1. sll1242, named ccr (cyanobacterial cold resistance gene)- 1, may be required for cold acclimation of cyanobacteria in light.
Resumo:
Reducing excessive light harvesting in photosynthetic organisms may increase biomass yields by limiting photoinhibition and increasing light penetration in dense cultures. The cyanobacterium Synechocystis sp. PCC 6803 harvests light via the phycobilisome, which consists of an allophycocyanin core and six radiating rods, each with three phycocyanin (PC) discs. Via targeted gene disruption and alterations to the promoter region, three mutants with two (pcpcT→C) and one (ΔCpcC1C2:pcpcT→C) PC discs per rod or lacking PC (olive) were generated. Photoinhibition and chlorophyll levels decreased upon phycobilisome reduction, although greater penetration of white light was observed only in the PC-deficient mutant. In all strains cultured at high cell densities, most light was absorbed by the first 2 cm of the culture. Photosynthesis and respiration rates were also reduced in the ΔCpcC1C2:pcpcT→C and olive mutants. Cell size was smaller in the pcpcT→C and olive strains. Growth and biomass accumulation were similar between the wild-type and pcpcT→C under a variety of conditions. Growth and biomass accumulation of the olive mutant were poorer in carbon-saturated cultures but improved in carbon-limited cultures at higher light intensities, as they did in the ΔCpcC1C2:pcpcT→C mutant. This study shows that one PC disc per rod is sufficient for maximal light harvesting and biomass accumulation, except under conditions of high light and carbon limitation, and two or more are sufficient for maximal oxygen evolution. To our knowledge, this study is the first to measure light penetration in bulk cultures of cyanobacteria and offers important insights into photobioreactor design.