866 resultados para Compositional data analysis-roots in geosciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective Clustering with automatic K-determination (MOCK). the algorithm most closely related to ours. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The architecture of the new system uses Java language as programming environment. Since application parameters and hardware in a joint experiment are complex with a large variability of components, requirements and specification solutions need to be flexible and modular, independent from operating system and computer architecture. To describe and organize the information on all the components and the connections among them, systems are developed using the extensible Markup Language (XML) technology. The communication between clients and servers uses remote procedure call (RPC) based on the XML (RPC-XML technology). The integration among Java language, XML and RPC-XML technologies allows to develop easily a standard data and communication access layer between users and laboratories using common software libraries and Web application. The libraries allow data retrieval using the same methods for all user laboratories in the joint collaboration, and the Web application allows a simple graphical user interface (GUI) access. The TCABR tokamak team in collaboration with the IPFN (Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa) is implementing this remote participation technologies. The first version was tested at the Joint Experiment on TCABR (TCABRJE), a Host Laboratory Experiment, organized in cooperation with the IAEA (International Atomic Energy Agency) in the framework of the IAEA Coordinated Research Project (CRP) on ""Joint Research Using Small Tokamaks"". (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a novel approach in order to increase the recognition power of Multiscale Fractal Dimension (MFD) techniques, when applied to image classification. The proposal uses Functional Data Analysis (FDA) with the aim of enhancing the MFD technique precision achieving a more representative descriptors vector, capable of recognizing and characterizing more precisely objects in an image. FDA is applied to signatures extracted by using the Bouligand-Minkowsky MFD technique in the generation of a descriptors vector from them. For the evaluation of the obtained improvement, an experiment using two datasets of objects was carried out. A dataset was used of characters shapes (26 characters of the Latin alphabet) carrying different levels of controlled noise and a dataset of fish images contours. A comparison with the use of the well-known methods of Fourier and wavelets descriptors was performed with the aim of verifying the performance of FDA method. The descriptor vectors were submitted to Linear Discriminant Analysis (LDA) classification method and we compared the correctness rate in the classification process among the descriptors methods. The results demonstrate that FDA overcomes the literature methods (Fourier and wavelets) in the processing of information extracted from the MFD signature. In this way, the proposed method can be considered as an interesting choice for pattern recognition and image classification using fractal analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this article is to assess the role of real effective exchange rate volatility on long-run economic growth for a set of 82 advanced and emerging economies using a panel data set ranging from 1970 to 2009. With an accurate measure for exchange rate volatility, the results for the two-step system GMM panel growth models show that a more (less) volatile RER has significant negative (positive) impact on economic growth and the results are robust for different model specifications. In addition to that, exchange rate stability seems to be more important to foster long-run economic growth than exchange rate misalignment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a set of Brazilian commercial gasoline representative samples from São Paulo State, selected by HCA, plus six samples obtained directly from refineries were analysed by a high-sensitive gas chromatographic (GC) method ASTM D6733. The levels of saturated hydrocarbons and anhydrous ethanol obtained by GC were correlated with the quality obtained from Brazilian Government Petroleum, Natural Gas and Biofuels Agency (ANP) specifications through exploratory analysis (HCA and PCA). This correlation showed that the GC method, together with HCA and PCA, could be employed as a screening technique to determine compliance with the prescribed legal standards of Brazilian gasoline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, initial crystallographic studies of human haemoglobin (Hb) crystallized in isoionic and oxygen-free PEG solution are presented. Under these conditions, functional measurements of the O-2-linked binding of water molecules and release of protons have evidenced that Hb assumes an unforeseen new allosteric conformation. The determination of the high-resolution structure of the crystal of human deoxy-Hb fully stripped of anions may provide a structural explanation for the role of anions in the allosteric properties of Hb and, particularly, for the influence of chloride on the Bohr effect, the mechanism by which Hb oxygen affinity is regulated by pH. X-ray diffraction data were collected to 1.87 Angstrom resolution using a synchrotron-radiation source. Crystals belong to the space group P2(1)2(1)2 and preliminary analysis revealed the presence of one tetramer in the asymmetric unit. The structure is currently being refined using maximum-likelihood protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoeconomic Functional Analysis is a method developed for the analysis and optimal design of improvement of thermal systems (Frangopoulos, 1984). The purpose of this work is to discuss the cogeneration system optimization using a condensing steam turbine with two extractions. This cogeneration system is a rational alternative in pulp and paper plants in regard to the Brazilian conditions. The objective of this optimization consists of minimizing the global cost of the system acquisition and operation, based on the parametrization of actual data from a cellulose plant with a daily production of 1000 tons. Among the several possible decision variables, the pressure and temperature of live steam were selected. These variables significantly affect the energy performance of the cogeneration system. The conditions which determine a lower cost for the system are presented in conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study introduces a multi-agent architecture designed for doing automation process of data integration and intelligent data analysis. Different from other approaches the multi-agent architecture was designed using a multi-agent based methodology. Tropos, an agent based methodology was used for design. Based on the proposed architecture, we describe a Web based application where the agents are responsible to analyse petroleum well drilling data to identify possible abnormalities occurrence. The intelligent data analysis methods used was the Neural Network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary health care has been recognized as one of the key components of an effective health system. In its most developed form, the primary health care is the first contact with the health system and the site responsible for the organization of health care over time: individuals, their families and the general population; seeks to provide balance between the two goals of a national health system, which are improving the health of the population and provide equitable distribution of resources. Hospitalizations for primary care sensitive conditions (HPCSC) may be associated with deficiencies of service coverage primary health care or its effectiveness. Hospitalization rates can and should represent a warning sign, triggering mechanisms for analysis and search for explanations for these problems. The use of hospitalization data for HPCSC can serve as indicators of inequality in the health system, contributing to the evaluation of the deployment and implementation of health policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)