815 resultados para Comparative Genomics, Non-coding RNAs, Conservation, Segmentation, Change-points, Sliding Window Analysis, Markov Chain Monte Carlo, Bayesian modeling
Resumo:
Os microRNAs (miRNAs) são pequenos RNAs endógenos não codantes de 21-24 nucleotídeos (nt) que regulam a expressão gênica de genes-alvos. Eles estão envolvidos em diversos aspectos de desenvolvimento da planta, tanto na parte aérea, quanto no sistema radicular. Entre os miRNAs, o miRNA156 (miR156) regula a família de fatores de transcrição SQUAMOSA Promoter-Binding Protein-Like (SPL) afetando diferentes processos do desenvolvimento vegetal. Estudos recentes mostram que a via gênica miR156/SPL apresenta efeito positivo tanto no aumento da formação de raízes laterais, quanto no aumento de regeneração de brotos in vitro a partir de folhas e hipocótilos em Arabidopsis thaliana. Devido ao fato de que a origem da formação de raiz lateral e a regeneração in vitro de brotos a partir de raiz principal compartilham semelhanças anatômicas e moleculares, avaliou-se no presente estudo se a via miR156/SPL, da mesma forma que a partir de explantes aéreos, também é capaz de influenciar na regeneração de brotos in vitro a partir de explantes radiculares. Para tanto foram comparados taxa de regeneração, padrão de distribuição de auxina e citocinina, análises histológicas e histoquímicas das estruturas regeneradas em plantas com via miR156/SPL alterada, incluindo planta mutante hyl1, na qual a produção desse miRNA é severamente reduzida. Além disso, foi avaliado o padrão de expressão do miR156 e específicos genes SPL durante a regeneração de brotos in vitro a partir da raiz principal de Arabidopsis thaliana. No presente trabalho observou-se que a alteração da via gênica miR156/SPL é capaz de modular a capacidade de regeneração de brotos in vitro a partir de raiz principal de Arabidopsis thaliana e a distribuição de auxina e citocinina presente nas células e tecidos envolvidos no processo de regeneração. Plantas superexpressando o miR156 apresentaram redução no número de brotos regenerados, além de ter o plastochron reduzido quando comparado com plantas controle. Adicionalmente, plantas contento o gene SPL9 resistente à clivagem pelo miR156 (rSPL9) apresentaram severa redução na quantidade de brotos, além de terem o plastochron alongado. Interessantemente, plantas mutantes hyl1-2 e plantas rSPL10 não apresentaram regeneração de brotos ao longo da raiz principal, mas sim intensa formação de raízes laterais e protuberâncias, respectivamente, tendo essa última apresentado indícios de diferenciação celular precoce. Tomados em conjunto os dados sugerem que o miR156 apresenta importante papel no controle do processo de regeneração de brotos in vitro. Entretanto, esse efeito é mais complexo em regeneração in vitro a partir de raízes do que a partir de cotilédones ou hipocótilos.
Resumo:
Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring.
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
OBJECTIVES: Pregnancy may provide a 'teachable moment' for positive health behaviour change, as a time when women are both motivated towards health and in regular contact with health care professionals. This study aimed to investigate whether women's experiences of pregnancy indicate that they would be receptive to behaviour change during this period. DESIGN: Qualitative interview study. METHODS: Using interpretative phenomenological analysis, this study details how seven women made decisions about their physical activity and dietary behaviour during their first pregnancy. RESULTS: Two women had required fertility treatment to conceive. Their behaviour was driven by anxiety and a drive to minimize potential risks to the pregnancy. This included detailed information seeking and strict adherence to diet and physical activity recommendations. However, the majority of women described behaviour change as 'automatic', adopting a new lifestyle immediately upon discovering their pregnancy. Diet and physical activity were influenced by what these women perceived to be normal or acceptable during pregnancy (largely based on observations of others) and internal drivers, including bodily signals and a desire to retain some of their pre-pregnancy self-identity. More reasoned assessments regarding benefits for them and their baby were less prevalent and influential. CONCLUSIONS: Findings suggest that for women who conceived relatively easily, diet and physical activity behaviour during pregnancy is primarily based upon a combination of automatic judgements, physical sensations, and perceptions of what pregnant women are supposed to do. Health professionals and other credible sources appear to exert less influence. As such, pregnancy alone may not create a 'teachable moment'. Statement of contribution What is already known on this subject? Significant life events can be cues to action with relation to health behaviour change. However, much of the empirical research in this area has focused on negative health experiences such as receiving a false-positive screening result and hospitalization, and in relation to unequivocally negative behaviours such as smoking. It is often suggested that pregnancy, as a major life event, is a 'teachable moment' (TM) for lifestyle behaviour change due to an increase in motivation towards health and regular contact with health professionals. However, there is limited evidence for the utility of the TM model in predicting or promoting behaviour change. What does this study add? Two groups of women emerged from our study: the women who had experienced difficulties in conceiving and had received fertility treatment, and those who had conceived without intervention. The former group's experience of pregnancy was characterized by a sense of vulnerability and anxiety over sustaining the pregnancy which influenced every choice they made about their diet and physical activity. For the latter group, decisions about diet and physical activity were made immediately upon discovering their pregnancy, based upon a combination of automatic judgements, physical sensations, and perceptions of what is normal or 'good' for pregnancy. Among women with relatively trouble-free conception and pregnancy experiences, the necessary conditions may not be present to create a 'teachable moment'. This is due to a combination of a reliance on non-reflective decision-making, perception of low risk, and little change in affective response or self-concept.
Resumo:
Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.
Resumo:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Some non-coding RNAs (miRNAs) have been involved in regulatory activity in arrhythmogenesis, targeting genes that contribute to the development of AF. The present study aimed to evaluate the expression of candidate miRNAs in plasma from patients with AF and new-onset AF and its application as future markers for diagnosis and monitoring of disease. miR-21, miR-133a, miR-133b, miR-150, miR-328 and miR-499 were selected as targets in this study through a prior literature review. They were isolated from plas-ma of individuals aged from 20 to 85 years old with AF (n = 17), new-onset AF (n = 5) and without AF (n = 15), where the latter was the control group. The results were ana-lyzed by Real-Time PCR (RT-PCR) with miScript SYBR Green PCR. We observed that miR-21, miR-133b, miR-328 and miR-499 had different levels of expression be-tween the three groups (p <0.05). Increased expression of miR-21 (0.6-fold), miR-133b (1.4-fold), miR-328 (2.0-fold) and miR-499 (2.3-fold) in patients with new-onset AF when compared to AF and control subjects. The miR-133a and miR-150 expression did not differ among the groups. miR-21, miR-133b, miR-328 and miR-499 may be potential biomarkers for AF as well as for new-onset AF, for monitoring and for the di-agnosis. These findings may contribute to the understanding of the process that trig-gers AF and suggest application these molecules as future biomarkers for AF.
Resumo:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Some non-coding RNAs (miRNAs) have been involved in regulatory activity in arrhythmogenesis, targeting genes that contribute to the development of AF. The present study aimed to evaluate the expression of candidate miRNAs in plasma from patients with AF and new-onset AF and its application as future markers for diagnosis and monitoring of disease. miR-21, miR-133a, miR-133b, miR-150, miR-328 and miR-499 were selected as targets in this study through a prior literature review. They were isolated from plas-ma of individuals aged from 20 to 85 years old with AF (n = 17), new-onset AF (n = 5) and without AF (n = 15), where the latter was the control group. The results were ana-lyzed by Real-Time PCR (RT-PCR) with miScript SYBR Green PCR. We observed that miR-21, miR-133b, miR-328 and miR-499 had different levels of expression be-tween the three groups (p <0.05). Increased expression of miR-21 (0.6-fold), miR-133b (1.4-fold), miR-328 (2.0-fold) and miR-499 (2.3-fold) in patients with new-onset AF when compared to AF and control subjects. The miR-133a and miR-150 expression did not differ among the groups. miR-21, miR-133b, miR-328 and miR-499 may be potential biomarkers for AF as well as for new-onset AF, for monitoring and for the di-agnosis. These findings may contribute to the understanding of the process that trig-gers AF and suggest application these molecules as future biomarkers for AF.
Resumo:
Immunity is broadly defined as a mechanism of protection against non-self entities, a process which must be sufficiently robust to both eliminate the initial foreign body and then be maintained over the life of the host. Life-long immunity is impossible without the development of immunological memory, of which a central component is the cellular immune system, or T cells. Cellular immunity hinges upon a naïve T cell pool of sufficient size and breadth to enable Darwinian selection of clones responsive to foreign antigens during an initial encounter. Further, the generation and maintenance of memory T cells is required for rapid clearance responses against repeated insult, and so this small memory pool must be actively maintained by pro-survival cytokine signals over the life of the host.
T cell development, function, and maintenance are regulated on a number of molecular levels through complex regulatory networks. Recently, small non-coding RNAs, miRNAs, have been observed to have profound impacts on diverse aspects of T cell biology by impeding the translation of RNA transcripts to protein. While many miRNAs have been described that alter T cell development or functional differentiation, little is known regarding the role that miRNAs have in T cell maintenance in the periphery at homeostasis.
In Chapter 3 of this dissertation, tools to study miRNA biology and function were developed. First, to understand the effect that miRNA overexpression had on T cell responses, a novel overexpression system was developed to enhance the processing efficiency and ultimate expression of a given miRNA by placing it within an alternative miRNA backbone. Next, a conditional knockout mouse system was devised to specifically delete miR-191 in a cell population expressing recombinase. This strategy was expanded to permit the selective deletion of single miRNAs from within a cluster to discern the effects of specific miRNAs that were previously inaccessible in isolation. Last, to enable the identification of potentially therapeutically viable miRNA function and/or expression modulators, a high-throughput flow cytometry-based screening system utilizing miRNA activity reporters was tested and validated. Thus, several novel and useful tools were developed to assist in the studies described in Chapter 4 and in future miRNA studies.
In Chapter 4 of this dissertation, the role of miR-191 in T cell biology was evaluated. Using tools developed in Chapter 3, miR-191 was observed to be critical for T cell survival following activation-induced cell death, while proliferation was unaffected by alterations in miR-191 expression. Loss of miR-191 led to significant decreases in the numbers of CD4+ and CD8+ T cells in the periphery lymph nodes, but this loss had no impact on the homeostatic activation of either CD4+ or CD8+ cells. These peripheral changes were not caused by gross defects in thymic development, but rather impaired STAT5 phosphorylation downstream of pro-survival cytokine signals. miR-191 does not specifically inhibit STAT5, but rather directly targets the scaffolding protein, IRS1, which in turn alters cytokine-dependent signaling. The defect in peripheral T cell maintenance was exacerbated by the presence of a Bcl-2YFP transgene, which led to even greater peripheral T cell losses in addition to developmental defects. These studies collectively demonstrate that miR-191 controls peripheral T cell maintenance by modulating homeostatic cytokine signaling through the regulation of IRS1 expression and downstream STAT5 phosphorylation.
The studies described in this dissertation collectively demonstrate that miR-191 has a profound role in the maintenance of T cells at homeostasis in the periphery. Importantly, the manipulation of miR-191 altered immune homeostasis without leading to severe immunodeficiency or autoimmunity. As much data exists on the causative agents disrupting active immune responses and the formation of immunological memory, the basic processes underlying the continued maintenance of a functioning immune system must be fully characterized to facilitate the development of methods for promoting healthy immune function throughout the life of the individual. These findings also have powerful implications for the ability of patients with modest perturbations in T cell homeostasis to effectively fight disease and respond to vaccination and may provide valuable targets for therapeutic intervention.
Resumo:
The central dogma of molecular biology relies on the correct Watson-Crick (WC) geometry of canonical deoxyribonucleic acid (DNA) dG•dC and dA•dT base pairs to replicate and transcribe genetic information with speed and an astonishing level of fidelity. In addition, the Watson-Crick geometry of canonical ribonucleic acid (RNA) rG•rC and rA•rU base pairs is highly conserved to ensure that proteins are translated with high fidelity. However, numerous other potential nucleobase tautomeric and ionic configurations are possible that can give rise to entirely new pairing modes between the nucleotide bases. Very early on, James Watson and Francis Crick recognized their importance and in 1953 postulated that if bases adopted one of their less energetically disfavored tautomeric forms (and later ionic forms) during replication it could lead to the formation of a mismatch with a Watson-Crick-like geometry and could give rise to “natural mutations.”
Since this time numerous studies have provided evidence in support of this hypothesis and have expanded upon it; computational studies have addressed the energetic feasibilities of different nucleobases’ tautomeric and ionic forms in siico; crystallographic studies have trapped different mismatches with WC-like geometries in polymerase or ribosome active sites. However, no direct evidence has been given for (i) the direct existence of these WC-like mismatches in canonical DNA duplex, RNA duplexes, or non-coding RNAs; (ii) which, if any, tautomeric or ionic form stabilizes the WC-like geometry. This thesis utilizes nuclear magnetic resonance (NMR) spectroscopy and rotating frame relaxation dispersion (R1ρ RD) in combination with density functional theory (DFT), biochemical assays, and targeted chemical perturbations to show that (i) dG•dT mismatches in DNA duplexes, as well as rG•rU mismatches RNA duplexes and non-coding RNAs, transiently adopt a WC-like geometry that is stabilized by (ii) an interconnected network of rapidly interconverting rare tautomers and anionic bases. These results support Watson and Crick’s tautomer hypothesis, but additionally support subsequent hypotheses invoking anionic mismatches and ultimately tie them together. This dissertation shows that a common mismatch can adopt a Watson-Crick-like geometry globally, in both DNA and RNA, and whose geometry is stabilized by a kinetically linked network of rare tautomeric and anionic bases. The studies herein also provide compelling evidence for their involvement in spontaneous replication and translation errors.
Resumo:
Spontaneous fetal loss (25-40%) leading to decrease in litter size is a significant concern to the pork industry. A deficit in the placental vasculature has emerged as one of the important factors associated with fetal loss. During early pig pregnancy, the endometrium becomes enriched with immune cells recruited by conceptus-derived signals including specific chemokine stimuli. These immune cells assist in various aspects of placental development and angiogenesis. Recent evidence suggests that microRNAs (miRNAs: small non-coding RNAs that regulate gene expression) regulate immune cell development and their functions. In addition, intercellular communication including exchange of biomolecules (e.g. miRNAs) between the conceptus and endometrium regulate key developmental processes during pregnancy. To understand the biological significance of immune cell enrichment, regulation of their functions by miRNAs and transfer of miRNAs across the maternal fetal-interface, we screened specific sets of chemokines and pro- and anti-angiogenic miRNAs in endometrial lymphocytes (ENDO LY), endometrium, and chorioallantoic membrane (CAM) isolated from conceptus attachment sites (CAS) during early, gestation day (gd)20 and mid-pregnancy (gd50). We report increased expression of selected chemokines including CXCR3 and CCR5 in ENDO LY and CXCL10, CXCR3, CCL5, CCR5 in endometrium associated with arresting CAS at gd20. Some of these differences were also noted at the protein level (CXCL10, CXCR3, CCL5, and CCR5) in endometrium and CAM. We report for the first time significant differences for miRNAs involved in immune cell-derived angiogenesis (miR-296-5P, miR-150, miR-17P-5P, miR-18a, and miR-19a) between ENDO LY associated with healthy and arresting CAS. Significant differences were also found in endometrium and CAM for some miRNAs (miR-17-5P, miR-18a, miR-15b-5P, and miR-222). Finally, we confirm that placenta specific-exosomes contain proteins and 14 select miRNAs including miR-126-5P, miR-296-5P, miR-16, and miR-17-5P that are of relevance to early implantation events. We further demonstrated the bidirectional exosome shuttling between porcine trophectoderm cells (PTr2) and porcine aortic endothelial cells (PAOEC). PTr2-derived exosomes were able to modulate the endothelial cell proliferation that is crucial for the establishment of pregnancy. Our data unravels the selected chemokines and miRNAs associated with immune cell-regulated angiogenesis and reconfirm that exosome mediated cell-cell communication opens-up new avenues to understand porcine pregnancy.
Resumo:
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Resumo:
Advertising investment and audience figures indicate that television continues to lead as a mass advertising medium. However, its effectiveness is questioned due to problems such as zapping, saturation and audience fragmentation. This has favoured the development of non-conventional advertising formats. This study provides empirical evidence for the theoretical development. This investigation analyzes the recall generated by four non-conventional advertising formats in a real environment: short programme (branded content), television sponsorship, internal and external telepromotion versus the more conventional spot. The methodology employed has integrated secondary data with primary data from computer assisted telephone interviewing (CATI) were performed ad-hoc on a sample of 2000 individuals, aged 16 to 65, representative of the total television audience. Our findings show that non-conventional advertising formats are more effective at a cognitive level, as they generate higher levels of both unaided and aided recall, in all analyzed formats when compared to the spot.
Resumo:
International audience
Resumo:
International audience
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014