945 resultados para Combinatorial optimization algorithms
Resumo:
In this thesis we focus on optimization and simulation techniques applied to solve strategic, tactical and operational problems rising in the healthcare sector. At first we present three applications to Emilia-Romagna Public Health System (SSR) developed in collaboration with Agenzia Sanitaria e Sociale dell'Emilia-Romagna (ASSR), a regional center for innovation and improvement in health. Agenzia launched a strategic campaign aimed at introducing Operations Research techniques as decision making tools to support technological and organizational innovations. The three applications focus on forecast and fund allocation of medical specialty positions, breast screening program extension and operating theater planning. The case studies exploit the potential of combinatorial optimization, discrete event simulation and system dynamics techniques to solve resource constrained problem arising within Emilia-Romagna territory. We then present an application in collaboration with Dipartimento di Epidemiologia del Lazio that focuses on population demand of service allocation to regional emergency departments. Finally, a simulation-optimization approach, developed in collaboration with INESC TECH center of Porto, to evaluate matching policies for the kidney exchange problem is discussed.
Resumo:
This work deals with the car sequencing (CS) problem, a combinatorial optimization problem for sequencing mixed-model assembly lines. The aim is to find a production sequence for different variants of a common base product, such that work overload of the respective line operators is avoided or minimized. The variants are distinguished by certain options (e.g., sun roof yes/no) and, therefore, require different processing times at the stations of the line. CS introduces a so-called sequencing rule H:N for each option, which restricts the occurrence of this option to at most H in any N consecutive variants. It seeks for a sequence that leads to no or a minimum number of sequencing rule violations. In this work, CS’ suitability for workload-oriented sequencing is analyzed. Therefore, its solution quality is compared in experiments to the related mixed-model sequencing problem. A new sequencing rule generation approach as well as a new lower bound for the problem are presented. Different exact and heuristic solution methods for CS are developed and their efficiency is shown in experiments. Furthermore, CS is adjusted and applied to a resequencing problem with pull-off tables.
Resumo:
When designing metaheuristic optimization methods, there is a trade-off between application range and effectiveness. For large real-world instances of combinatorial optimization problems out-of-the-box metaheuristics often fail, and optimization methods need to be adapted to the problem at hand. Knowledge about the structure of high-quality solutions can be exploited by introducing a so called bias into one of the components of the metaheuristic used. These problem-specific adaptations allow to increase search performance. This thesis analyzes the characteristics of high-quality solutions for three constrained spanning tree problems: the optimal communication spanning tree problem, the quadratic minimum spanning tree problem and the bounded diameter minimum spanning tree problem. Several relevant tree properties, that should be explored when analyzing a constrained spanning tree problem, are identified. Based on the gained insights on the structure of high-quality solutions, efficient and robust solution approaches are designed for each of the three problems. Experimental studies analyze the performance of the developed approaches compared to the current state-of-the-art.
Resumo:
An optimizing compiler internal representation fundamentally affects the clarity, efficiency and feasibility of optimization algorithms employed by the compiler. Static Single Assignment (SSA) as a state-of-the-art program representation has great advantages though still can be improved. This dissertation explores the domain of single assignment beyond SSA, and presents two novel program representations: Future Gated Single Assignment (FGSA) and Recursive Future Predicated Form (RFPF). Both FGSA and RFPF embed control flow and data flow information, enabling efficient traversal program information and thus leading to better and simpler optimizations. We introduce future value concept, the designing base of both FGSA and RFPF, which permits a consumer instruction to be encountered before the producer of its source operand(s) in a control flow setting. We show that FGSA is efficiently computable by using a series T1/T2/TR transformation, yielding an expected linear time algorithm for combining together the construction of the pruned single assignment form and live analysis for both reducible and irreducible graphs. As a result, the approach results in an average reduction of 7.7%, with a maximum of 67% in the number of gating functions compared to the pruned SSA form on the SPEC2000 benchmark suite. We present a solid and near optimal framework to perform inverse transformation from single assignment programs. We demonstrate the importance of unrestricted code motion and present RFPF. We develop algorithms which enable instruction movement in acyclic, as well as cyclic regions, and show the ease to perform optimizations such as Partial Redundancy Elimination on RFPF.
Resumo:
Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.
Resumo:
This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.
Resumo:
This paper studies the problem of determining the position of beacon nodes in Local Positioning Systems (LPSs), for which there are no inter-beacon distance measurements available and neither the mobile node nor any of the stationary nodes have positioning or odometry information. The common solution is implemented using a mobile node capable of measuring its distance to the stationary beacon nodes within a sensing radius. Many authors have implemented heuristic methods based on optimization algorithms to solve the problem. However, such methods require a good initial estimation of the node positions in order to find the correct solution. In this paper we present a new method to calculate the inter-beacon distances, and hence the beacons positions, based in the linearization of the trilateration equations into a closed-form solution which does not require any approximate initial estimation. The simulations and field evaluations show a good estimation of the beacon node positions.
Resumo:
Abstract Transport is the foundation of any economy: it boosts economic growth, creates wealth, enhances trade, geographical accessibility and the mobility of people. Transport is also a key ingredient for a high quality of life, making places accessible and bringing people together. The future prosperity of our world will depend on the ability of all of its regions to remain fully and competitively integrated in the world economy. Efficient transport is vital in making this happen. Operations research can help in efficiently planning the design and operating transport systems. Planning and operational processes are fields that are rich in combinatorial optimization problems. These problems can be analyzed and solved through the application of mathematical models and optimization techniques, which may lead to an improvement in the performance of the transport system, as well as to a reduction in the time required for solving these problems. The latter aspect is important, because it increases the flexibility of the system: the system can adapt in a faster way to changes in the environment (i.e.: weather conditions, crew illness, failures, etc.). These disturbing changes (called disruptions) often enforce the schedule to be adapted. The direct consequences are delays and cancellations, implying many schedule adjustments and huge costs. Consequently, robust schedules and recovery plans must be developed in order to fight against disruptions. This dissertation makes contributions to two different fields: rail and air applications. Robust planning and recovery methods are presented. In the field of railway transport we develop several mathematical models which answer to RENFE’s (the major railway operator in Spain) needs: 1. We study the rolling stock assignment problem: here, we introduce some robust aspects in order to ameliorate some operations which are likely to fail. Once the rolling stock assignment is known, we propose a robust routing model which aims at identifying the train units’ sequences while minimizing the expected delays and human resources needed to perform the sequences. 2. It is widely accepted that the sequential solving approach produces solutions that are not global optima. Therefore, we develop an integrated and robust model to determine the train schedule and rolling stock assignment. We also propose an integrated model to study the rolling stock circulations. Circulations are determined by the rolling stock assignment and routing of the train units. 3. Although our aim is to develop robust plans, disruptions will be likely to occur and recovery methods will be needed. Therefore, we propose a recovery method which aims to recover the train schedule and rolling stock assignment in an integrated fashion all while considering the passenger demand. In the field of air transport we develop several mathematical models which answer to IBERIA’s (the major airline in Spain) needs: 1. We look at the airline-scheduling problem and develop an integrated approach that optimizes schedule design, fleet assignment and passenger use so as to reduce costs and create fewer incompatibilities between decisions. Robust itineraries are created to ameliorate misconnected passengers. 2. Air transport operators are continuously facing competition from other air operators and different modes of transport (e.g., High Speed Rail). Consequently, airline profitability is critically influenced by the airline’s ability to estimate passenger demands and construct profitable flight schedules. We consider multi-modal competition including airline and rail, and develop a new approach that estimates the demand associated with a given schedule; and generates airline schedules and fleet assignments using an integrated schedule design and fleet assignment optimization model that captures the impacts of schedule decisions on passenger demand.
Resumo:
El objetivo principal de esta tesis es el desarrollo de herramientas numéricas basadas en técnicas de onda completa para el diseño asistido por ordenador (Computer-Aided Design,‘CAD’) de dispositivos de microondas. En este contexto, se desarrolla una herramienta numérica basada en el método de los elementos finitos para el diseño y análisis de antenas impresas mediante algoritmos de optimización. Esta técnica consiste en dividir el análisis de una antena en dos partes. Una parte de análisis 3D que se realiza sólo una vez en cada punto de frecuencia de la banda de funcionamiento donde se sustituye una superficie que contiene la metalización del parche por puertas artificiales. En una segunda parte se inserta entre las puertas artificiales en la estructura 3D la superficie soportando una metalización y se procede un análisis 2D para caracterizar el comportamiento de la antena. La técnica propuesta en esta tesis se puede implementar en un algoritmo de optimización para definir el perfil de la antena que permite conseguir los objetivos del diseño. Se valida experimentalmente dicha técnica empleándola en el diseño de antenas impresas de banda ancha para diferentes aplicaciones mediante la optimización del perfil de los parches. También, se desarrolla en esta tesis un procedimiento basado en el método de descomposición de dominio y el método de los elementos finitos para el diseño de dispositivos pasivos de microonda. Se utiliza este procedimiento en particular para el diseño y sintonía de filtros de microondas. En la primera etapa de su aplicación se divide la estructura que se quiere analizar en subdominios aplicando el método de descomposición de dominio, este proceso permite analizar cada segmento por separado utilizando el método de análisis adecuado dado que suele haber subdominios que se pueden analizar mediante métodos analíticos por lo que el tiempo de análisis es más reducido. Se utilizan métodos numéricos para analizar los subdominios que no se pueden analizar mediante métodos analíticos. En esta tesis, se utiliza el método de los elementos finitos para llevar a cabo el análisis. Además de la descomposición de dominio, se aplica un proceso de barrido en frecuencia para reducir los tiempos del análisis. Como método de orden reducido se utiliza la técnica de bases reducidas. Se ha utilizado este procedimiento para diseñar y sintonizar varios ejemplos de filtros con el fin de comprobar la validez de dicho procedimiento. Los resultados obtenidos demuestran la utilidad de este procedimiento y confirman su rigurosidad, precisión y eficiencia en el diseño de filtros de microondas. ABSTRACT The main objective of this thesis is the development of numerical tools based on full-wave techniques for computer-aided design ‘CAD’ of microwave devices. In this context, a numerical technique based on the finite element method ‘FEM’ for the design and analysis of printed antennas using optimization algorithms has been developed. The proposed technique consists in dividing the analysis of the antenna in two stages. In the first stage, the regions of the antenna which do not need to be modified during the CAD process are initially characterized only once from their corresponding matrix transfer function (Generalized Admittance matrix, ‘GAM’). The regions which will be modified are defined as artificial ports, precisely the regions which will contain the conducting surfaces of the printed antenna. In a second stage, the contour shape of the conducting surfaces of the printed antenna is iteratively modified in order to achieve a desired electromagnetic performance of the antenna. In this way, a new GAM of the radiating device which takes into account each printed antenna shape is computed after each iteration. The proposed technique can be implemented with a genetic algorithm to achieve the design objectives. This technique is validated experimentally and applied to the design of wideband printed antennas for different applications by optimizing the shape of the radiating device. In addition, a procedure based on the domain decomposition method and the finite element method has been developed for the design of microwave passive devices. In particular, this procedure can be applied to the design and tune of microwave filters. In the first stage of its implementation, the structure to be analyzed is divided into subdomains using the domain decomposition method; this process allows each subdomains can be analyzed separately using suitable analysis method, since there is usually subdomains that can be analyzed by analytical methods so that the time of analysis is reduced. For analyzing the subdomains that cannot be analyzed by analytical methods, we use the numerical methods. In this thesis, the FEM is used to carry out the analysis. Furthermore the decomposition of the domain, a frequency sweep process is applied to reduce analysis times. The reduced order model as the reduced basis technique is used in this procedure. This procedure is applied to the design and tune of several examples of microwave filters in order to check its validity. The obtained results allow concluding the usefulness of this procedure and confirming their thoroughness, accuracy and efficiency for the design of microwave filters.
Resumo:
El auge del "Internet de las Cosas" (IoT, "Internet of Things") y sus tecnologías asociadas han permitido su aplicación en diversos dominios de la aplicación, entre los que se encuentran la monitorización de ecosistemas forestales, la gestión de catástrofes y emergencias, la domótica, la automatización industrial, los servicios para ciudades inteligentes, la eficiencia energética de edificios, la detección de intrusos, la gestión de desastres y emergencias o la monitorización de señales corporales, entre muchas otras. La desventaja de una red IoT es que una vez desplegada, ésta queda desatendida, es decir queda sujeta, entre otras cosas, a condiciones climáticas cambiantes y expuestas a catástrofes naturales, fallos de software o hardware, o ataques maliciosos de terceros, por lo que se puede considerar que dichas redes son propensas a fallos. El principal requisito de los nodos constituyentes de una red IoT es que estos deben ser capaces de seguir funcionando a pesar de sufrir errores en el propio sistema. La capacidad de la red para recuperarse ante fallos internos y externos inesperados es lo que se conoce actualmente como "Resiliencia" de la red. Por tanto, a la hora de diseñar y desplegar aplicaciones o servicios para IoT, se espera que la red sea tolerante a fallos, que sea auto-configurable, auto-adaptable, auto-optimizable con respecto a nuevas condiciones que puedan aparecer durante su ejecución. Esto lleva al análisis de un problema fundamental en el estudio de las redes IoT, el problema de la "Conectividad". Se dice que una red está conectada si todo par de nodos en la red son capaces de encontrar al menos un camino de comunicación entre ambos. Sin embargo, la red puede desconectarse debido a varias razones, como que se agote la batería, que un nodo sea destruido, etc. Por tanto, se hace necesario gestionar la resiliencia de la red con el objeto de mantener la conectividad entre sus nodos, de tal manera que cada nodo IoT sea capaz de proveer servicios continuos, a otros nodos, a otras redes o, a otros servicios y aplicaciones. En este contexto, el objetivo principal de esta tesis doctoral se centra en el estudio del problema de conectividad IoT, más concretamente en el desarrollo de modelos para el análisis y gestión de la Resiliencia, llevado a la práctica a través de las redes WSN, con el fin de mejorar la capacidad la tolerancia a fallos de los nodos que componen la red. Este reto se aborda teniendo en cuenta dos enfoques distintos, por una parte, a diferencia de otro tipo de redes de dispositivos convencionales, los nodos en una red IoT son propensos a perder la conexión, debido a que se despliegan en entornos aislados, o en entornos con condiciones extremas; por otra parte, los nodos suelen ser recursos con bajas capacidades en términos de procesamiento, almacenamiento y batería, entre otros, por lo que requiere que el diseño de la gestión de su resiliencia sea ligero, distribuido y energéticamente eficiente. En este sentido, esta tesis desarrolla técnicas auto-adaptativas que permiten a una red IoT, desde la perspectiva del control de su topología, ser resiliente ante fallos en sus nodos. Para ello, se utilizan técnicas basadas en lógica difusa y técnicas de control proporcional, integral y derivativa (PID - "proportional-integral-derivative"), con el objeto de mejorar la conectividad de la red, teniendo en cuenta que el consumo de energía debe preservarse tanto como sea posible. De igual manera, se ha tenido en cuenta que el algoritmo de control debe ser distribuido debido a que, en general, los enfoques centralizados no suelen ser factibles a despliegues a gran escala. El presente trabajo de tesis implica varios retos que conciernen a la conectividad de red, entre los que se incluyen: la creación y el análisis de modelos matemáticos que describan la red, una propuesta de sistema de control auto-adaptativo en respuesta a fallos en los nodos, la optimización de los parámetros del sistema de control, la validación mediante una implementación siguiendo un enfoque de ingeniería del software y finalmente la evaluación en una aplicación real. Atendiendo a los retos anteriormente mencionados, el presente trabajo justifica, mediante una análisis matemático, la relación existente entre el "grado de un nodo" (definido como el número de nodos en la vecindad del nodo en cuestión) y la conectividad de la red, y prueba la eficacia de varios tipos de controladores que permiten ajustar la potencia de trasmisión de los nodos de red en respuesta a eventuales fallos, teniendo en cuenta el consumo de energía como parte de los objetivos de control. Así mismo, este trabajo realiza una evaluación y comparación con otros algoritmos representativos; en donde se demuestra que el enfoque desarrollado es más tolerante a fallos aleatorios en los nodos de la red, así como en su eficiencia energética. Adicionalmente, el uso de algoritmos bioinspirados ha permitido la optimización de los parámetros de control de redes dinámicas de gran tamaño. Con respecto a la implementación en un sistema real, se han integrado las propuestas de esta tesis en un modelo de programación OSGi ("Open Services Gateway Initiative") con el objeto de crear un middleware auto-adaptativo que mejore la gestión de la resiliencia, especialmente la reconfiguración en tiempo de ejecución de componentes software cuando se ha producido un fallo. Como conclusión, los resultados de esta tesis doctoral contribuyen a la investigación teórica y, a la aplicación práctica del control resiliente de la topología en redes distribuidas de gran tamaño. Los diseños y algoritmos presentados pueden ser vistos como una prueba novedosa de algunas técnicas para la próxima era de IoT. A continuación, se enuncian de forma resumida las principales contribuciones de esta tesis: (1) Se han analizado matemáticamente propiedades relacionadas con la conectividad de la red. Se estudia, por ejemplo, cómo varía la probabilidad de conexión de la red al modificar el alcance de comunicación de los nodos, así como cuál es el mínimo número de nodos que hay que añadir al sistema desconectado para su re-conexión. (2) Se han propuesto sistemas de control basados en lógica difusa para alcanzar el grado de los nodos deseado, manteniendo la conectividad completa de la red. Se han evaluado diferentes tipos de controladores basados en lógica difusa mediante simulaciones, y los resultados se han comparado con otros algoritmos representativos. (3) Se ha investigado más a fondo, dando un enfoque más simple y aplicable, el sistema de control de doble bucle, y sus parámetros de control se han optimizado empleando algoritmos heurísticos como el método de la entropía cruzada (CE, "Cross Entropy"), la optimización por enjambre de partículas (PSO, "Particle Swarm Optimization"), y la evolución diferencial (DE, "Differential Evolution"). (4) Se han evaluado mediante simulación, la mayoría de los diseños aquí presentados; además, parte de los trabajos se han implementado y validado en una aplicación real combinando técnicas de software auto-adaptativo, como por ejemplo las de una arquitectura orientada a servicios (SOA, "Service-Oriented Architecture"). ABSTRACT The advent of the Internet of Things (IoT) enables a tremendous number of applications, such as forest monitoring, disaster management, home automation, factory automation, smart city, etc. However, various kinds of unexpected disturbances may cause node failure in the IoT, for example battery depletion, software/hardware malfunction issues and malicious attacks. So, it can be considered that the IoT is prone to failure. The ability of the network to recover from unexpected internal and external failures is known as "resilience" of the network. Resilience usually serves as an important non-functional requirement when designing IoT, which can further be broken down into "self-*" properties, such as self-adaptive, self-healing, self-configuring, self-optimization, etc. One of the consequences that node failure brings to the IoT is that some nodes may be disconnected from others, such that they are not capable of providing continuous services for other nodes, networks, and applications. In this sense, the main objective of this dissertation focuses on the IoT connectivity problem. A network is regarded as connected if any pair of different nodes can communicate with each other either directly or via a limited number of intermediate nodes. More specifically, this thesis focuses on the development of models for analysis and management of resilience, implemented through the Wireless Sensor Networks (WSNs), which is a challenging task. On the one hand, unlike other conventional network devices, nodes in the IoT are more likely to be disconnected from each other due to their deployment in a hostile or isolated environment. On the other hand, nodes are resource-constrained in terms of limited processing capability, storage and battery capacity, which requires that the design of the resilience management for IoT has to be lightweight, distributed and energy-efficient. In this context, the thesis presents self-adaptive techniques for IoT, with the aim of making the IoT resilient against node failures from the network topology control point of view. The fuzzy-logic and proportional-integral-derivative (PID) control techniques are leveraged to improve the network connectivity of the IoT in response to node failures, meanwhile taking into consideration that energy consumption must be preserved as much as possible. The control algorithm itself is designed to be distributed, because the centralized approaches are usually not feasible in large scale IoT deployments. The thesis involves various aspects concerning network connectivity, including: creation and analysis of mathematical models describing the network, proposing self-adaptive control systems in response to node failures, control system parameter optimization, implementation using the software engineering approach, and evaluation in a real application. This thesis also justifies the relations between the "node degree" (the number of neighbor(s) of a node) and network connectivity through mathematic analysis, and proves the effectiveness of various types of controllers that can adjust power transmission of the IoT nodes in response to node failures. The controllers also take into consideration the energy consumption as part of the control goals. The evaluation is performed and comparison is made with other representative algorithms. The simulation results show that the proposals in this thesis can tolerate more random node failures and save more energy when compared with those representative algorithms. Additionally, the simulations demonstrate that the use of the bio-inspired algorithms allows optimizing the parameters of the controller. With respect to the implementation in a real system, the programming model called OSGi (Open Service Gateway Initiative) is integrated with the proposals in order to create a self-adaptive middleware, especially reconfiguring the software components at runtime when failures occur. The outcomes of this thesis contribute to theoretic research and practical applications of resilient topology control for large and distributed networks. The presented controller designs and optimization algorithms can be viewed as novel trials of the control and optimization techniques for the coming era of the IoT. The contributions of this thesis can be summarized as follows: (1) Mathematically, the fault-tolerant probability of a large-scale stochastic network is analyzed. It is studied how the probability of network connectivity depends on the communication range of the nodes, and what is the minimum number of neighbors to be added for network re-connection. (2) A fuzzy-logic control system is proposed, which obtains the desired node degree and in turn maintains the network connectivity when it is subject to node failures. There are different types of fuzzy-logic controllers evaluated by simulations, and the results demonstrate the improvement of fault-tolerant capability as compared to some other representative algorithms. (3) A simpler but more applicable approach, the two-loop control system is further investigated, and its control parameters are optimized by using some heuristic algorithms such as Cross Entropy (CE), Particle Swarm Optimization (PSO), and Differential Evolution (DE). (4) Most of the designs are evaluated by means of simulations, but part of the proposals are implemented and tested in a real-world application by combining the self-adaptive software technique and the control algorithms which are presented in this thesis.
Resumo:
Esta tesis establece los fundamentos teóricos y diseña una colección abierta de clases C++ denominada VBF (Vector Boolean Functions) para analizar funciones booleanas vectoriales (funciones que asocian un vector booleano a otro vector booleano) desde una perspectiva criptográfica. Esta nueva implementación emplea la librería NTL de Victor Shoup, incorporando nuevos módulos que complementan a las funciones de NTL, adecuándolas para el análisis criptográfico. La clase fundamental que representa una función booleana vectorial se puede inicializar de manera muy flexible mediante diferentes estructuras de datas tales como la Tabla de verdad, la Representación de traza y la Forma algebraica normal entre otras. De esta manera VBF permite evaluar los criterios criptográficos más relevantes de los algoritmos de cifra en bloque y de stream, así como funciones hash: por ejemplo, proporciona la no-linealidad, la distancia lineal, el grado algebraico, las estructuras lineales, la distribución de frecuencias de los valores absolutos del espectro Walsh o del espectro de autocorrelación, entre otros criterios. Adicionalmente, VBF puede llevar a cabo operaciones entre funciones booleanas vectoriales tales como la comprobación de igualdad, la composición, la inversión, la suma, la suma directa, el bricklayering (aplicación paralela de funciones booleanas vectoriales como la empleada en el algoritmo de cifra Rijndael), y la adición de funciones coordenada. La tesis también muestra el empleo de la librería VBF en dos aplicaciones prácticas. Por un lado, se han analizado las características más relevantes de los sistemas de cifra en bloque. Por otro lado, combinando VBF con algoritmos de optimización, se han diseñado funciones booleanas cuyas propiedades criptográficas son las mejores conocidas hasta la fecha. ABSTRACT This thesis develops the theoretical foundations and designs an open collection of C++ classes, called VBF, designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This new implementation uses the NTL library from Victor Shoup, adding new modules which complement the existing ones making VBF better suited for cryptography. The fundamental class representing a vector Boolean function can be initialized in a flexible way via several alternative types of data structures such as Truth Table, Trace Representation, Algebraic Normal Form (ANF) among others. This way, VBF allows the evaluation of the most relevant cryptographic criteria for block and stream ciphers as well as for hash functions: for instance, it provides the nonlinearity, the linearity distance, the algebraic degree, the linear structures, the frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, VBF can perform operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions. This thesis also illustrates the use of VBF in two practical applications. On the one hand, the most relevant properties of the existing block ciphers have been analysed. On the other hand, by combining VBF with optimization algorithms, new Boolean functions have been designed which have the best known cryptographic properties up-to-date.
Resumo:
La capacidad de transporte es uno de los baremos fundamentales para evaluar la progresión que puede llegar a tener un área económica y social. Es un sector de elevada importancia para la sociedad actual. Englobado en los distintos tipos de transporte, uno de los medios de transporte que se encuentra más en alza en la actualidad, es el ferroviario. Tanto para movilidad de pasajeros como para mercancías, el tren se ha convertido en un medio de transporte muy útil. Se encuentra dentro de las ciudades, entre ciudades con un radio pequeño entre ellas e incluso cada vez más, gracias a la alta velocidad, entre ciudades con gran distancia entre ellas. Esta Tesis pretende ayudar en el diseño de una de las etapas más importantes de los Proyectos de instalación de un sistema ferroviario: el sistema eléctrico de tracción. La fase de diseño de un sistema eléctrico de tracción ferroviaria se enfrenta a muchas dudas que deben ser resueltas con precisión. Del éxito de esta fase dependerá la capacidad de afrontar las demandas de energía de la explotación ferroviaria. También se debe atender a los costes de instalación y de operación, tanto costes directos como indirectos. Con la Metodología que se presenta en esta Tesis se ofrecerá al diseñador la opción de manejar un sistema experto que como soluciones le plantee un conjunto de escenarios de sistemas eléctricos correctos, comprobados por resolución de modelos de ecuaciones. Correctos desde el punto de vista de validez de distintos parámetros eléctrico, como de costes presupuestarios e impacto de costes indirectos. Por tanto, el diseñador al haber hecho uso de esta Metodología, tendría en un espacio de tiempo relativamente corto, un conjunto de soluciones factibles con las que poder elegir cuál convendría más según sus intereses finales. Esta Tesis se ha desarrollado en una vía de investigación integrada dentro del Centro de Investigaciones Ferroviarias CITEF-UPM. Entre otros proyectos y vías de investigación, en CITEF se ha venido trabajando en estudios de validación y dimensionamiento de sistemas eléctricos ferroviarios con diversos y variados clientes y sistemas ferroviarios. A lo largo de los proyectos realizados, el interés siempre ha girado mayoritariamente sobre los siguientes parámetros del sistema eléctrico: - Calcular número y posición de subestaciones de tracción. Potencia de cada subestación. - Tipo de catenaria a lo largo del recorrido. Conductores que componen la catenaria. Características. - Calcular número y posición de autotransformadores para sistemas funcionando en alterna bitensión o 2x25kV. - Posición Zonas Neutras. - Validación según normativa de: o Caídas de tensión en la línea o Tensiones máximas en el retorno de la línea o Sobrecalentamiento de conductores o Sobrecalentamiento de los transformadores de las subestaciones de tracción La idea es que las soluciones aportadas por la Metodología sugieran escenarios donde de estos parámetros estén dentro de los límites que marca la normativa. Tener la posibilidad de tener un repositorio de posibles escenarios donde los parámetros y elementos eléctricos estén calculados como correctos, aporta un avance en tiempos y en pruebas, que mejoraría ostensiblemente el proceso habitual de diseño para los sistemas eléctricos ferroviarios. Los costes directos referidos a elementos como subestaciones de tracción, autotransformadores, zonas neutras, ocupan un gran volumen dentro del presupuesto de un sistema ferroviario. En esta Tesis se ha querido profundizar también en el efecto de los costes indirectos provocados en la instalación y operación de sistemas eléctricos. Aquellos derivados del impacto medioambiental, los costes que se generan al mantener los equipos eléctricos y la instalación de la catenaria, los costes que implican la conexión entre las subestaciones de tracción con la red general o de distribución y por último, los costes de instalación propios de cada elemento compondrían los costes indirectos que, según experiencia, se han pensado relevantes para ejercer un cierto control sobre ellos. La Metodología cubrirá la posibilidad de que los diseños eléctricos propuestos tengan en cuenta variaciones de coste inasumibles o directamente, proponer en igualdad de condiciones de parámetros eléctricos, los más baratos en función de los costes comentados. Analizando los costes directos e indirectos, se ha pensado dividir su impacto entre los que se computan en la instalación y los que suceden posteriormente, durante la operación de la línea ferroviaria. Estos costes normalmente suelen ser contrapuestos, cuánto mejor es uno peor suele ser el otro y viceversa, por lo que hace falta un sistema que trate ambos objetivos por separado. Para conseguir los objetivos comentados, se ha construido la Metodología sobre tres pilares básicos: - Simulador ferroviario Hamlet: Este simulador integra módulos para construir esquemas de vías ferroviarios completos; módulo de simulación mecánica y de la tracción de material rodante; módulo de señalización ferroviaria; módulo de sistema eléctrico. Software realizado en C++ y Matlab. - Análisis y estudio de cómo focalizar los distintos posibles escenarios eléctricos, para que puedan ser examinados rápidamente. Pico de demanda máxima de potencia por el tráfico ferroviario. - Algoritmos de optimización: A partir de un estudio de los posibles algoritmos adaptables a un sistema tan complejo como el que se plantea, se decidió que los algoritmos genéticos serían los elegidos. Se han escogido 3 algoritmos genéticos, permitiendo recabar información acerca del comportamiento y resultados de cada uno de ellos. Los elegidos por motivos de tiempos de respuesta, multiobjetividad, facilidad de adaptación y buena y amplia aplicación en proyectos de ingeniería fueron: NSGA-II, AMGA-II y ɛ-MOEA. - Diseño de funciones y modelo preparado para trabajar con los costes directos e indirectos y las restricciones básicas que los escenarios eléctricos no deberían violar. Estas restricciones vigilan el comportamiento eléctrico y la estabilidad presupuestaria. Las pruebas realizadas utilizando el sistema han tratado o bien de copiar situaciones que se puedan dar en la realidad o directamente sistemas y problemas reales. Esto ha proporcionado además de la posibilidad de validar la Metodología, también se ha posibilitado la comparación entre los algoritmos genéticos, comparar sistemas eléctricos escogidos con los reales y llegar a conclusiones muy satisfactorias. La Metodología sugiere una vía de trabajo muy interesante, tanto por los resultados ya obtenidos como por las oportunidades que puede llegar a crear con la evolución de la misma. Esta Tesis se ha desarrollado con esta idea, por lo que se espera pueda servir como otro factor para trabajar con la validación y diseño de sistemas eléctricos ferroviarios. ABSTRACT Transport capacity is one of the critical points to evaluate the progress than a specific social and economical area is able to reach. This is a sector of high significance for the actual society. Included inside the most common types of transport, one of the means of transport which is elevating its use nowadays is the railway. Such as for passenger transport of weight movements, the train is being consolidated like a very useful mean of transport. Railways are installed in many geography areas. Everyone know train in cities, or connecting cities inside a surrounding area or even more often, taking into account the high-speed, there are railways infrastructure between cities separated with a long distance. This Ph.D work aims to help in the process to design one of the most essential steps in Installation Projects belonging to a railway system: Power Supply System. Design step of the railway power supply, usually confronts to several doubts and uncertainties, which must be solved with high accuracy. Capacity to supply power to the railway traffic depends on the success of this step. On the other hand is very important to manage the direct and indirect costs derived from Installation and Operation. With the Methodology is presented in this Thesis, it will be offered to the designer the possibility to handle an expert system that finally will fill a set of possible solutions. These solutions must be ready to work properly in the railway system, and they were tested using complex equation models. This Thesis has been developed through a research way, integrated inside Citef (Railway Research Centre of Technical University of Madrid). Among other projects and research ways, in Citef has been working in several validation studies and dimensioning of railway power supplies. It is been working by a large range of clients and railways systems. Along the accomplished Projects, the main goal has been rounded mostly about the next list of parameters of the electrical system: - Calculating number and location of traction substations. Power of each substation. - Type of Overhead contact line or catenary through the railway line. The wires which set up the catenary. Main Characteristics. - Calculating number and position of autotransformers for systems working in alternating current bi-voltage of called 2x25 kV. - Location of Neutral Zones. - Validating upon regulation of: o Drop voltages along the line o Maximum return voltages in the line o Overheating/overcurrent of the wires of the catenary o Avoiding overheating in the transformers of the traction substations. Main objective is that the solutions given by the Methodology, could be suggest scenarios where all of these parameters from above, would be between the limits established in the regulation. Having the choice to achieve a repository of possible good scenarios, where the parameters and electrical elements will be assigned like ready to work, that gives a great advance in terms of times and avoiding several tests. All of this would improve evidently the regular railway electrical systems process design. Direct costs referred to elements like traction substations, autotransformers, neutral zones, usually take up a great volume inside the general budget in railway systems. In this Thesis has been thought to bear in mind another kind of costs related to railway systems, also called indirect costs. These could be enveloped by those enmarked during installation and operation of electrical systems. Those derived from environmental impact; costs generated during the maintenance of the electrical elements and catenary; costs involved in the connection between traction substations and general electric grid; finally costs linked with the own installation of the whole electrical elements needed for the correct performance of the railway system. These are integrated inside the set has been collected taking into account own experience and research works. They are relevant to be controlled for our Methodology, just in case for the designers of this type of systems. The Methodology will cover the possibility that the final proposed power supply systems will be hold non-acceptable variations of costs, comparing with initial expected budgets, or directly assuming a threshold of budget for electrical elements in actual scenario, and achieving the cheapest in terms of commented costs from above. Analyzing direct and indirect costs, has been thought to divide their impact between two main categories. First one will be inside the Installation and the other category will comply with the costs often happens during Railway Operation time. These costs normally are opposed, that means when one is better the other turn into worse, in costs meaning. For this reason is necessary treating both objectives separately, in order to evaluate correctly the impact of each one into the final system. The objectives detailed before build the Methodology under three basic pillars: - Railway simulator Hamlet: This software has modules to configure many railway type of lines; mechanical and traction module to simulate the movement of rolling stock; signaling module; power supply module. This software has been developed using C++ and Matlab R13a - Previously has been mandatory to study how would be possible to work properly with a great number of feasible electrical systems. The target comprised the quick examination of these set of scenarios in terms of time. This point is talking about Maximum power demand peaks by railway operation plans. - Optimization algorithms. A railway infrastructure is a very complex system. At the beginning it was necessary to search about techniques and optimization algorithms, which could be adaptable to this complex system. Finally three genetic multiobjective algorithms were the chosen. Final decision was taken attending to reasons such as time complexity, able to multiobjective, easy to integrate in our problem and with a large application in engineering tasks. They are: NSGA-II, AMGA-II and ɛ-MOEA. - Designing objectives functions and equation model ready to work with the direct and indirect costs. The basic restrictions are not able to avoid, like budgetary or electrical, connected hardly with the recommended performance of elements, catenary and safety in a electrical railway systems. The battery of tests launched to the Methodology has been designed to be as real as possible. In fact, due to our work in Citef and with real Projects, has been integrated and configured three real railway lines, in order to evaluate correctly the final results collected by the Methodology. Another topic of our tests has been the comparison between the performances of the three algorithms chosen. Final step has been the comparison again with different possible good solutions, it means power supply system designs, provided by the Methodology, testing the validity of them. Once this work has been finished, the conclusions have been very satisfactory. Therefore this Thesis suggest a very interesting way of research and work, in terms of the results obtained and for the future opportunities can be created with the evolution of this. This Thesis has been developed with this idea in mind, so is expected this work could adhere another factor to work in the difficult task of validation and design of railway power supply systems.
Resumo:
RESUMO Simulações de aeroacústica computacional demandam uma quantidade considerável de tempo, o que torna complicada a realização de estudos paramétricos. O presente trabalho propõe uma metodologia viável para otimização aeroacústica. Através da análise numérica utilizando dinâmica dos fluidos computacional, foi estudada a aplicação de uma placa separadora desacoplada como método de controle passivo da esteira turbulenta de um cilindro e avaliou-se a irradiação de ruído causado pela interação do escoamento com ambos os corpos, empregando ferramentas de aeroacústica computacional baseadas no método de Ffowcs-Williams e Hawkings. Algumas abordagens distintas de metodologias de otimização de projeto foram aplicadas neste problema, com o objetivo de chegar a uma configuração otimizada que permita a redução do nível sonoro ao longe. Assim, utilizando uma ferramenta de otimização multidisciplinar, pode-se avaliar a capacidade de modelos heurísticos e a grande vantagem do emprego de algoritmos baseados em método de superfície de resposta quando aplicados em um problema não linear, pois requerem a avaliação de um menor número de alternativas para se obter um ponto ótimo. Além disso, foi possível identificar e agrupar os resultados em 5 clusters baseados em seus parâmetros geométricos, nível de pressão sonora global e o valor quadrático médio do coeficiente de arrasto, confirmando a eficiência da aplicação de placas separadoras longas desacopladas posicionadas próximas ao cilindro na estabilização da esteira turbulenta, enquanto que o posicionamento de placas acima de um espaçamento crítico aumentou o nível de pressão acústica irradiado devido à formação de vórtices no espaço entre o cilindro e a placa separadora.
Resumo:
In recent times the Douglas–Rachford algorithm has been observed empirically to solve a variety of nonconvex feasibility problems including those of a combinatorial nature. For many of these problems current theory is not sufficient to explain this observed success and is mainly concerned with questions of local convergence. In this paper we analyze global behavior of the method for finding a point in the intersection of a half-space and a potentially non-convex set which is assumed to satisfy a well-quasi-ordering property or a property weaker than compactness. In particular, the special case in which the second set is finite is covered by our framework and provides a prototypical setting for combinatorial optimization problems.
Resumo:
The cross-entropy (CE) method is a new generic approach to combinatorial and multi-extremal optimization and rare event simulation. The purpose of this tutorial is to give a gentle introduction to the CE method. We present the CE methodology, the basic algorithm and its modifications, and discuss applications in combinatorial optimization and machine learning. combinatorial optimization