898 resultados para Combinatorial Algorithms
Resumo:
To evaluate the impact of noninvasive ventilation (NIV) algorithms available on intensive care unit ventilators on the incidence of patient-ventilator asynchrony in patients receiving NIV for acute respiratory failure. Prospective multicenter randomized cross-over study. Intensive care units in three university hospitals. Patients consecutively admitted to the ICU and treated by NIV with an ICU ventilator were included. Airway pressure, flow and surface diaphragmatic electromyography were recorded continuously during two 30-min periods, with the NIV (NIV+) or without the NIV algorithm (NIV0). Asynchrony events, the asynchrony index (AI) and a specific asynchrony index influenced by leaks (AIleaks) were determined from tracing analysis. Sixty-five patients were included. With and without the NIV algorithm, respectively, auto-triggering was present in 14 (22%) and 10 (15%) patients, ineffective breaths in 15 (23%) and 5 (8%) (p = 0.004), late cycling in 11 (17%) and 5 (8%) (p = 0.003), premature cycling in 22 (34%) and 21 (32%), and double triggering in 3 (5%) and 6 (9%). The mean number of asynchronies influenced by leaks was significantly reduced by the NIV algorithm (p < 0.05). A significant correlation was found between the magnitude of leaks and AIleaks when the NIV algorithm was not activated (p = 0.03). The global AI remained unchanged, mainly because on some ventilators with the NIV algorithm premature cycling occurs. In acute respiratory failure, NIV algorithms provided by ICU ventilators can reduce the incidence of asynchronies because of leaks, thus confirming bench test results, but some of these algorithms can generate premature cycling.
Resumo:
Les cellules CD8? T cytolytiques (CTL) sont les principaux effecteurs du système immunitaire adaptatif contre les infections et les tumeurs. La récente identification d?antigènes tumoraux humains reconnus par des cellules T cytolytiques est la base pour le, développement des vaccins antigène spécifiques contre le cancer. Le nombre d?antigènes tumoraux reconnus par des CTL que puisse être utilisé comme cible pour la vaccination des patients atteints du cancer est encore limité. Une nouvelle technique, simple et rapide, vient d?être proposée pour l?identification d?antigènes reconnus par des CTL. Elle se base sur l?utilisation de librairies combinatoriales de peptides arrangées en un format de "scanning" ou balayage par position (PS-SCL). La première partie de cette étude a consisté à valider cette nouvelle technique par une analyse détaillée de la reconnaissance des PS-SCL par différents clones de CTL spécifiques pour des antigènes associés à la tumeur (TAA) connus ainsi que par des clones de spécificité inconnue. Les résultats de ces analyses révèlent que pour tous les clones, la plupart des acides aminés qui composent la séquence du peptide antigénique naturel ont été identifiés par l?utilisation des PS-SCL. Les résultats obtenus ont permis d?identifier des peptides analogues ayant une antigènicité augmentée par rapport au peptide naturel, ainsi que des peptides comportant de multiples modifications de séquence, mais présentant la même réactivité que le peptide naturel. La deuxième partie de cette étude a consisté à effectuer des analyses biométriques des résultats complexes générés par la PS-SCL. Cette approche a permis l?identification des séquences correspondant aux épitopes naturels à partir de bases de données de peptides publiques. Parmi des milliers de peptides, les séquences naturelles se trouvent comprises dans les 30 séquences ayant les scores potentiels de stimulation les plus élevés pour chaque TAA étudié. Mais plus important encore, l?utilisation des PS-SCL avec un clone réactif contre des cellules tumorales mais de spécificité inconnue nous a permis d?identifier I?epitope reconnu par ce clone. Les données présentées ici encouragent l?utilisation des PS-SCL pour l?identification et l?optimisation d?épitopes pour des CTL réactifs anti-tumoraux, ainsi que pour l?étude de la reconnaissance dégénérée d?antigènes par les CTL.<br/><br/>CD8+ cytolytic T lymphocytes (CTL) are the main effector cells of the adaptive immune system against infection and tumors. The recent identification of moleculariy defined human tumor Ags recognized by autologous CTL has opened new opportunities for the development of Ag-specific cancer vaccines. Despite extensive work, however, the number of CTL-defined tumor Ags that are suitable targets for the vaccination of cancer patients is still limited, especially because of the laborious and time consuming nature of the procedures currentiy used for their identification. The use of combinatorial peptide libraries in positionai scanning format (Positional Scanning Synthetic Combinatorial Libraries, PS-SCL)' has recently been proposed as an alternative approach for the identification of these epitopes. To validate this approach, we analyzed in detail the recognition of PS-SCL by tumor-reactive CTL clones specific for multiple well-defined tumor-associated Ags (TAA) as well as by tumor-reactive CTL clones of unknown specificity. The results of these analyses revealed that for all the TAA-specific clones studied most of the amino acids composing the native antigenic peptide sequences could be identified through the use of PS-SCL. Based on the data obtained from the screening of PS-SCL, we could design peptide analogs of increased antigenicity as well as cross-reactive analog peptides containing multiple amino acid substitutions. In addition, the resuits of PS-SCL-screening combined with a recently developed biometric data analysis (PS-SCL-based biometric database analysis) allowed the identification of the native peptides in public protein databases among the 30 most active sequences, and this was the case for all the TAA studied. More importantiy, the screening of PS- SCL with a tumor-reactive CTL clone of unknown specificity resulted in the identification of the actual epitope. Overall, these data encourage the use of PS-SCL not oniy for the identification and optimization of tumor-associated CTL epitopes, but also for the analysis of degeneracy in T lymphocyte receptor (TCR) recognition of tumor Ags.<br/><br/>Les cellules T CD8? cytolytiques font partie des globules blancs du sang et sont les principales responsables de la lutte contre les infections et les tumeurs. Les immunologistes cherchent depuis des années à identifier des molécules exprimées et présentées à la surface des tumeurs qui puissent être reconnues par des cellules T CD8? cytolytiques capables ensuite de tuer ces tumeurs de façon spécifique. Ce type de molécules représente la base pour le développement de vaccins contre le cancer puisqu?elles pourraient être injectées aux patients afin d?induire une réponse anti- tumorale. A présent, il y a très peu de molécules capables de stimuler le système immunitaire contre les tumeurs qui sont connues parce que les techniques développées à ce jour pour leur identification sont complexes et longues. Une nouvelle technique vient d?être proposée pour l?identification de ce type de molécules qui se base sur l?utilisation de librairies de peptides. Ces librairies représentent toutes les combinaisons possibles des composants de base des molécules recherchées. La première partie de cette étude a consisté à valider cette nouvelle technique en utilisant des cellules T CD8? cytolytiques capables de tuer des cellules tumorales en reconnaissant une molécule connue présente à leur surface. On a démontré que l?utilisation des librairies permet d?identifier la plupart des composants de base de la molécule reconnue par les cellules T CD8? cytolytiques utilisées. La deuxième partie de cette étude a consisté à effectuer une recherche des molécules potentiellement actives dans des protéines présentes dans des bases des données en utilisant un programme informatique qui permet de classer les molécules sur la base de leur activité biologique. Parmi des milliers de molécules de la base de données, celles reconnues par nos cellules T CD8? cytolytiques ont été trouvées parmi les plus actives. Plus intéressant encore, la combinaison de ces deux techniques nous a permis d?identifier la molécule reconnue par une population de cellules T CD8? cytolytiques ayant une activité anti-tumorale, mais pour laquelle on ne connaissait pas la spécificité. Nos résultats encouragent l?utilisation des librairies pour trouver et optimiser des molécules reconnues spécifiquement par des cellules T CD8? cytolytiques capables de tuer des tumeurs.
Resumo:
En els darrers anys, la criptografia amb corbes el.líptiques ha adquirit una importància creixent, fins a arribar a formar part en la actualitat de diferents estàndards industrials. Tot i que s'han dissenyat variants amb corbes el.líptiques de criptosistemes clàssics, com el RSA, el seu màxim interès rau en la seva aplicació en criptosistemes basats en el Problema del Logaritme Discret, com els de tipus ElGamal. En aquest cas, els criptosistemes el.líptics garanteixen la mateixa seguretat que els construïts sobre el grup multiplicatiu d'un cos finit primer, però amb longituds de clau molt menor. Mostrarem, doncs, les bones propietats d'aquests criptosistemes, així com els requeriments bàsics per a que una corba sigui criptogràficament útil, estretament relacionat amb la seva cardinalitat. Revisarem alguns mètodes que permetin descartar corbes no criptogràficament útils, així com altres que permetin obtenir corbes bones a partir d'una de donada. Finalment, descriurem algunes aplicacions, com són el seu ús en Targes Intel.ligents i sistemes RFID, per concloure amb alguns avenços recents en aquest camp.
Resumo:
Sudoku problems are some of the most known and enjoyed pastimes, with a never diminishing popularity, but, for the last few years those problems have gone from an entertainment to an interesting research area, a twofold interesting area, in fact. On the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares, are being actively used for experimental design, as in [8, 44, 39, 9]. On the other hand, Sudoku problems, as simple as they seem, are really hard structured combinatorial search problems, and thanks to their characteristics and behavior, they can be used as benchmark problems for refining and testing solving algorithms and approaches. Also, thanks to their high inner structure, their study can contribute more than studies of random problems to our goal of solving real-world problems and applications and understanding problem characteristics that make them hard to solve. In this work we use two techniques for solving and modeling Sudoku problems, namely, Constraint Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular shape, problems can be of any order, and solution existence is not guaranteed. With respect to the worst-case complexity, we prove that GSP with block regions of m rows and n columns with m = n is NP-complete. For studying the empirical hardness of GSP, we define a series of instance generators, that differ in the balancing level they guarantee between the constraints of the problem, by finely controlling how the holes are distributed in the cells of the GSP. Experimentally, we show that the more balanced are the constraints, the higher the complexity of solving the GSP instances, and that GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized by GSP. Finally, we provide a study of the correlation between backbone variables – variables with the same value in all the solutions of an instance– and hardness of GSP.
Resumo:
The goal of this work is to try to create a statistical model, based only on easily computable parameters from the CSP problem to predict runtime behaviour of the solving algorithms, and let us choose the best algorithm to solve the problem. Although it seems that the obvious choice should be MAC, experimental results obtained so far show, that with big numbers of variables, other algorithms perfom much better, specially for hard problems in the transition phase.
Resumo:
In this paper we design and develop several filtering strategies for the analysis of data generated by a resonant bar gravitational wave (GW) antenna, with the goal of assessing the presence (or absence) therein of long-duration monochromatic GW signals, as well as the eventual amplitude and frequency of the signals, within the sensitivity band of the detector. Such signals are most likely generated in the fast rotation of slightly asymmetric spinning stars. We develop practical procedures, together with a study of their statistical properties, which will provide us with useful information on the performance of each technique. The selection of candidate events will then be established according to threshold-crossing probabilities, based on the Neyman-Pearson criterion. In particular, it will be shown that our approach, based on phase estimation, presents a better signal-to-noise ratio than does pure spectral analysis, the most common approach.
Resumo:
Viime vuosien nopea kehitys on kiihdyttänyt uusien lääkkeiden kehittämisprosessia. Kombinatorinen kemia on tehnyt mahdolliseksi syntetisoida suuria kokoelmia rakenteeltaan toisistaan poikkeavia molekyylejä, nk. kombinatorisia kirjastoja, biologista seulontaa varten. Siinä molekyylien rakenteeseen liittyvä aktiivisuus tutkitaan useilla erilaisilla biologisilla testeillä mahdollisten "osumien" löytämiseksi, joista osasta saatetaan myöhemmin kehittää uusia lääkeaineita. Jotta biologisten tutkimusten tulokset olisivat luotettavia, on syntetisoitujen komponenttien oltava mahdollisimman puhtaita. Tämän vuoksi tarvitaan HTP-puhdistusta korkealaatuisten komponenttien ja luotettavan biologisen tiedon takaamiseksi. Jatkuvasti kasvavat tuotantovaatimukset ovat johtaneet näiden puhdistustekniikoiden automatisointiin ja rinnakkaistamiseen. Preparatiivinen LC/MS soveltuu kombinatoristen kirjastojen nopeaan ja tehokkaaseen puhdistamiseen. Monet tekijät, esimerkiksi erotuskolonnin ominaisuudet sekä virtausgradientti, vaikuttavat preparatiivisen LC/MS puhdistusprosessin tehokkuuteen. Nämä parametrit on optimoitava parhaan tuloksen saamiseksi. Tässä työssä tutkittiin emäksisiä komponentteja erilaisissa virtausolosuhteissa. Menetelmä kombinatoristen kirjastojen puhtaustason määrittämiseksi LC/MS-puhdistuksen jälkeen optimoitiin ja määritettiin puhtaus joillekin komponenteille eri kirjastoista ennen puhdistusta.
Resumo:
BACKGROUND: HIV surveillance requires monitoring of new HIV diagnoses and differentiation of incident and older infections. In 2008, Switzerland implemented a system for monitoring incident HIV infections based on the results of a line immunoassay (Inno-Lia) mandatorily conducted for HIV confirmation and type differentiation (HIV-1, HIV-2) of all newly diagnosed patients. Based on this system, we assessed the proportion of incident HIV infection among newly diagnosed cases in Switzerland during 2008-2013. METHODS AND RESULTS: Inno-Lia antibody reaction patterns recorded in anonymous HIV notifications to the federal health authority were classified by 10 published algorithms into incident (up to 12 months) or older infections. Utilizing these data, annual incident infection estimates were obtained in two ways, (i) based on the diagnostic performance of the algorithms and utilizing the relationship 'incident = true incident + false incident', (ii) based on the window-periods of the algorithms and utilizing the relationship 'Prevalence = Incidence x Duration'. From 2008-2013, 3'851 HIV notifications were received. Adult HIV-1 infections amounted to 3'809 cases, and 3'636 of them (95.5%) contained Inno-Lia data. Incident infection totals calculated were similar for the performance- and window-based methods, amounting on average to 1'755 (95% confidence interval, 1588-1923) and 1'790 cases (95% CI, 1679-1900), respectively. More than half of these were among men who had sex with men. Both methods showed a continuous decline of annual incident infections 2008-2013, totaling -59.5% and -50.2%, respectively. The decline of incident infections continued even in 2012, when a 15% increase in HIV notifications had been observed. This increase was entirely due to older infections. Overall declines 2008-2013 were of similar extent among the major transmission groups. CONCLUSIONS: Inno-Lia based incident HIV-1 infection surveillance proved useful and reliable. It represents a free, additional public health benefit of the use of this relatively costly test for HIV confirmation and type differentiation.
Resumo:
BACKGROUND: Lung clearance index (LCI), a marker of ventilation inhomogeneity, is elevated early in children with cystic fibrosis (CF). However, in infants with CF, LCI values are found to be normal, although structural lung abnormalities are often detectable. We hypothesized that this discrepancy is due to inadequate algorithms of the available software package. AIM: Our aim was to challenge the validity of these software algorithms. METHODS: We compared multiple breath washout (MBW) results of current software algorithms (automatic modus) to refined algorithms (manual modus) in 17 asymptomatic infants with CF, and 24 matched healthy term-born infants. The main difference between these two analysis methods lies in the calculation of the molar mass differences that the system uses to define the completion of the measurement. RESULTS: In infants with CF the refined manual modus revealed clearly elevated LCI above 9 in 8 out of 35 measurements (23%), all showing LCI values below 8.3 using the automatic modus (paired t-test comparing the means, P < 0.001). Healthy infants showed normal LCI values using both analysis methods (n = 47, paired t-test, P = 0.79). The most relevant reason for false normal LCI values in infants with CF using the automatic modus was the incorrect recognition of the end-of-test too early during the washout. CONCLUSION: We recommend the use of the manual modus for the analysis of MBW outcomes in infants in order to obtain more accurate results. This will allow appropriate use of infant lung function results for clinical and scientific purposes. Pediatr Pulmonol. 2015; 50:970-977. © 2015 Wiley Periodicals, Inc.
Resumo:
BACKGROUND: Available methods to simulate nucleotide or amino acid data typically use Markov models to simulate each position independently. These approaches are not appropriate to assess the performance of combinatorial and probabilistic methods that look for coevolving positions in nucleotide or amino acid sequences. RESULTS: We have developed a web-based platform that gives a user-friendly access to two phylogenetic-based methods implementing the Coev model: the evaluation of coevolving scores and the simulation of coevolving positions. We have also extended the capabilities of the Coev model to allow for the generalization of the alphabet used in the Markov model, which can now analyse both nucleotide and amino acid data sets. The simulation of coevolving positions is novel and builds upon the developments of the Coev model. It allows user to simulate pairs of dependent nucleotide or amino acid positions. CONCLUSIONS: The main focus of our paper is the new simulation method we present for coevolving positions. The implementation of this method is embedded within the web platform Coev-web that is freely accessible at http://coev.vital-it.ch/, and was tested in most modern web browsers.
Resumo:
Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.
Resumo:
In the literature on housing market areas, different approaches can be found to defining them, for example, using travel-to-work areas and, more recently, making use of migration data. Here we propose a simple exercise to shed light on which approach performs better. Using regional data from Catalonia, Spain, we have computed housing market areas with both commuting data and migration data. In order to decide which procedure shows superior performance, we have looked at uniformity of prices within areas. The main finding is that commuting algorithms present more homogeneous areas in terms of housing prices.
Resumo:
Identification of order of an Autoregressive Moving Average Model (ARMA) by the usual graphical method is subjective. Hence, there is a need of developing a technique to identify the order without employing the graphical investigation of series autocorrelations. To avoid subjectivity, this thesis focuses on determining the order of the Autoregressive Moving Average Model using Reversible Jump Markov Chain Monte Carlo (RJMCMC). The RJMCMC selects the model from a set of the models suggested by better fitting, standard deviation errors and the frequency of accepted data. Together with deep analysis of the classical Box-Jenkins modeling methodology the integration with MCMC algorithms has been focused through parameter estimation and model fitting of ARMA models. This helps to verify how well the MCMC algorithms can treat the ARMA models, by comparing the results with graphical method. It has been seen that the MCMC produced better results than the classical time series approach.
Resumo:
Among the challenges of pig farming in today's competitive market, there is factor of the product traceability that ensures, among many points, animal welfare. Vocalization is a valuable tool to identify situations of stress in pigs, and it can be used in welfare records for traceability. The objective of this work was to identify stress in piglets using vocalization, calling this stress on three levels: no stress, moderate stress, and acute stress. An experiment was conducted on a commercial farm in the municipality of Holambra, São Paulo State , where vocalizations of twenty piglets were recorded during the castration procedure, and separated into two groups: without anesthesia and local anesthesia with lidocaine base. For the recording of acoustic signals, a unidirectional microphone was connected to a digital recorder, in which signals were digitized at a frequency of 44,100 Hz. For evaluation of sound signals, Praat® software was used, and different data mining algorithms were applied using Weka® software. The selection of attributes improved model accuracy, and the best attribute selection was used by applying Wrapper method, while the best classification algorithms were the k-NN and Naive Bayes. According to the results, it was possible to classify the level of stress in pigs through their vocalization.