986 resultados para Collection of samples


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fresh deposits above the margins of Reedy Glacier show that maximum ice levels during the last glaciation were several hundred meters above present near the glacier mouth and converged to less than 60 m above the present-day surface at the head of the glacier. Exposure ages of samples from five sites along its margin show that Reedy Glacier and its tributaries thickened asynchronously between 17 and 7 kyr BP At the Quartz Hills, located midway along the glacier, maximum ice levels were reached during the period 17-14 kyr BP. Farther up-glacier the ice surface reached its maximum elevation more recently: 14.7-10.2 kyr BP at the Caloplaca Hills; 9.1-7.7 kyr BP at Mims Spur; and around 7 kyr BP at Hatcher Bluffs. We attribute this time-transgressive behavior to two different processes: At the glacier mouth, growth of grounded ice and subsequent deglaciation in the Ross Sea embayment caused a wave of thickening and then thinning to propagate up-glacier. During the Lateglacial and Holocene, increased snow accumulation on the East Antarctic Ice Sheet caused transient thickening at the head of the glacier. An important result of this work is that moraines deposited along Reedy Glacier during the last ice age cannot be correlated to reconstruct a single glacial maximum longitudinal profile. The profile steepened during deglaciation of the Ross Sea, thinning at the Quartz Hills after 13 kyr BP while thickening upstream. Near its confluence with Mercer Ice Stream, rapid thinning beginning prior to 7-8 kyr BP reduced the level of Reedy Glacier to close to its present level. Thinning over the past 1000 years has lowered the glacier by less than 20 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Shallow arctic lakes and ponds have simple and short food webs, but large uncertainties remain about benthic-pelagic links in these systems. We tested whether organic matter of benthic origin supports zooplankton biomass in a pond in NE Greenland, using stable isotope analysis of carbon and nitrogen in the pond itself and in a 13C-enrichment enclosure experiment. In the latter, we manipulated the carbon isotope signature of benthic algae to enhance its isotopic discrimination from other potential food sources for zooplankton. 2. The cladoceran Daphnia middendorffiana responded to the 13C-enrichment of benthic mats with progressively increasing d13C values, suggesting benthic feeding. Stable isotope analysis also pointed towards a negligible contribution of terrestrial carbon to the diet of D. middendorffiana. This agreed with the apparent dominance of autochthonous dissolved organic matter in the pond revealed by analysis of coloured dissolved organic matter. 3. Daily net production by phytoplankton in the pond (18 mg C/m**2/day) could satisfy only up to half of the calculated minimum energy requirements of D. middendorffiana (35 mg C/m**2/day), whereas benthic primary production alone (145 mg C/m**2/day) was more than sufficient. 4. Our findings highlight benthic primary production as a major dietary source for D. middendorffiana in this system and suggest that benthic organic matter may play a key role in sustaining pelagic secondary production in such nutrient-limited high arctic ponds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic history, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallization at HT conditions; ages scatter from 263-294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ca. 1880 Ma Circum-Superior Large Igneous Province (LIP) consists of a number of discontinuous segments known to cover a significant portion of the margin of the Superior Province craton in North America. New geochemical and isotopic data from western segments of this LIP support a common origin for the these segments and suggest that magmatism in the Lake Superior region may have been fed through the ~ 600 km long Pickle Crow dyke from a source north of the Fox River Belt in northeastern Manitoba. The Fox River Belt, Pickle Crow dyke and sections of the Hemlock Formation in the Lake Superior region possess trace element signatures which are similar to those of more recent oceanic plateaux. The Hemlock Formation displays a heterogeneous geochemical signature. This chemical heterogeneity can in part be explained by lithospheric contamination and possibly by source heterogeneity. The tectonomagmatic setting in which these igneous rocks were formed could have involved a mantle plume. Evidence supporting a plume origin includes high MgO volcanic rocks, high calculated degrees of partial melting and geochemical signatures similar to those of oceanic plateaux.