983 resultados para Collect seeds
Resumo:
A two-sector Ramsey-type model of growth is developed to investigate the relationship between agricultural productivity and economy-wide growth. The framework takes into account the peculiarities of agriculture both in production ( reliance on a fixed natural resource base) and in consumption (life-sustaining role and low income elasticity of food demand). The transitional dynamics of the model establish that when preferences respect Engel's law, the level and growth rate of agricultural productivity influence the speed of capital accumulation. A calibration exercise shows that a small difference in agricultural productivity has drastic implications for the rate and pattern of growth of the economy. Hence, low agricultural productivity can form a bottleneck limiting growth, because high food prices result in a low saving rate.
Resumo:
The ability to germinate, tolerate desiccation and survive in air-dry storage was investigated during early seed development in planta and subsequent ex planta maturation of sumauma (Ceiba pentandra). Immature fruits were collected on three different dates (i.e. from about 5 days before until 7 days after mass maturity). Immature fresh seeds were not able to germinate. Fruits or seeds were subjected immediately after each collection to three different drying treatments with progressively slower rates of dessication: (i) seeds were extracted from the fruits and dried immediately; (ii) fruits were dried in a thin layer; (iii) fruits were dried in a tied polyethylene bag (with 10 holes of 1cm diameter). Drying was in a room maintained at 25 degrees C +/- 3 degrees C and 65%+/- 5% r.h. For treatment (i) the seeds were dried for 6 days in order to reduce moisture content to around 13% ( +/- 2%) moisture content. For treatments (ii) and (iii) the fruits were subjected to different periods of drying depending upon collection date. The results of these post-collection treatments showed generally that the more immature the seeds the slower the rate of drying that is required to improve ability to germinate, ability to tolerate desiccation and potential longevity, but at the third harvest, 7 days after mass maturity, the intermediate drying rate treatment was the most beneficial. Thus post fruit collection treatments can be modified depending upon the stage of seed development in order to provide good to high quality seeds of sumauma when collection has to be made at a site with difficult access at less than ideal times. The results are relevant to seed collection practices for both forestry and ex situ plant biodiversity conservation.
Resumo:
In the hot and dry conditions in which seeds of the tree legume Peltophorum pterocarpum develop and mature in Vietnam, seed moisture content declined rapidly on the mother plant from 87% at 42 d after flowering (DAF) to 15% at 70 DAF. Dry weight of the pods attained a maximum value at about 42 DAF, but seed mass maturity (i.e. the end of the seed-filling phase) occurred at about 62 DAF, at which time seed moisture content was about 45-48%. The onset of the ability of freshly collected seeds to germinate (in 63-d tests at 28-34degreesC) occurred at 42 DAF, i.e. about 20 d before mass maturity. Full germination (98%) was attained at 70 DAF, i.e. at about 8 d after mass maturity. Thereafter, germination of fresh seeds declined, due to the imposition of a hard seed coat. Tolerance of desiccation to 10% moisture content was first detected at 56 DAF and was complete within the seed population by 84 DAF, i.e. about 22 d after mass maturity. Hardseededness began to be induced when seeds were dried to about 15% moisture content and below, with a negative logarithmic relation between hardseededness and moisture content below this value.
Resumo:
Question: What is the value of using Rhinanthus minor in grassland restoration and can restrictions on its establishment be overcome? Location: England (United Kingdom). Methods: Two experiments were established to determine the efficacy of inoculating R. minor on a suite of four agriculturally improved grasslands and the efficacy of using R. minor in grassland restoration. In Experiment 1, the effect of herbicide gap creation on the establishment and persistence of R. minor in grasslands ranging in productivity was investigated with respect to sward management. In Exp. 2, R. minor was sown at 1000 seeds/m(2) in conjunction with a standard meadow mix over a randomized plot design into Lolium perenne grassland of moderate productivity. The treatment of scarification was investigated as a treatment to promote R. minor. Results: Gap size had a significant role in the establishment and performance of R. minor, especially the 30 cm diameter gaps (Exp. 1). However, R. minor failed to establish long-term persistent populations in all of the agriculturally improved grasslands. In Exp. 2, establishment of R. minor was increased by scarification and its presence was associated with a significant increase in Shannon diversity and the number of sown and unsown species. Values of grass above-ground biomass were significantly lower in plots sown with R. minor, but values of total above-ground biomass (including R. minor) and forb biomass (not including R. minor) were not affected. Conclusions: The value of introducing R. minor into species-poor grassland to increase diversity has been demonstrated, but successful establishment was dependent on grassland type. The scope for using R. minor in grassland restoration schemes is therefore conditional, although establishment can be enhanced through disturbance such as sward scarification.
Resumo:
A study was undertaken to determine whether cocoa swollen shoot virus is transmitted by seeds, to improve the robustness of quarantine procedures for international exchange and long term conservation of cocoa germplasm. PCR/capillary electrophoresis, using cocoa swollen shoot virus primers designed from the most conserved regions of the six published cocoa genome sequences, allowed the detection of cocoa swollen shoot virus in all the component parts of cocoa seeds from cocoa swollen shoot virus-infected trees. PCR/capillary electrophoresis revealed the presence of cocoa swollen shoot virus in seedlings raised from seeds obtained from cocoa swollen shoot virus-infected trees. The high frequency with which the virus was transmitted through the seedlings suggested that cocoa swollen shoot virus is transmitted by seeds. This has serious implications for cocoa germplasm conservation and distribution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Phytase (myo-inositol-1,2,3,4,5,6-hexakisphosphate phosphohydrolase, EC 3.1.3.26), which catalyses the step-wise hydrolysis of phytic acid, was purified from cotyledons of dormant Corylus avellana L. seeds. The enzyme was separated from the major soluble acid phosphatase by successive (NH4)2SO4 precipitation, gel filtration and cation exchange chromatography resulting in a 300-fold purification and yield of 7.5%. The native enzyme positively interacted with Concanavalin A suggesting that it is putatively glycosylated. After size exclusion chromatography and SDS–PAGE it was found to be a monomeric protein with molecular mass 72±2.5 kDa. The hazel enzyme exhibited optimum activity for phytic acid hydrolysis at pH 5 and, like other phytases, had broad substrate specificity. It exhibited the lowest Km (162 μM) and highest specificity constant (Vmax/Km) for phytic acid, indicating that this is the preferred in vivo substrate. It required no metal ion as a co-factor, while inorganic phosphate and fluoride competitively inhibited enzymic activity (Ki=407 μM and Ki=205 μM, respectively).
Resumo:
Botrytis cinerea occurred commonly on cultivated Primula ×polyantha seed. The fungus was mostly on the outside of the seed but sometimes was present within the seed. The fungus frequently caused disease at maturity in plants grown from the seed, demonstrated by growing plants in a filtered airflow, isolated from other possible sources of infection. Young, commercially produced P. ×polyantha plants frequently had symptomless B. cinerea infections spread throughout the plants for up to 3 months, with symptoms appearing only at flowering. Single genetic individuals of B. cinerea, as determined by DNA fingerprinting, often were dispersed widely throughout an apparently healthy plant. Plants could, however, contain more than one isolate.
Resumo:
Fourteen sesquiterpenes, three monoterpenes and one diterpene natural product have been isolated from the seeds of Artemisia annua. The possible biogenesis of some of these natural products are discussed by reference to recently reported experimental results for the autoxidation of dihydroartemisinic acid and other terpenoids from Artemisia annua. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Both airborne spores of Rhynchosporium secalis and seed infection have been implied as major sources of primary inoculum for barley leaf blotch (scald) epidemics in fields without previous history of barley cropping. However, little is known about their relative importance in the onset of disease. Results from both quantitative real-time PCR and visual assessments indicated that seed infection was the main source of inoculum in the field trial conducted in this study. Glasshouse studies established that the pathogen can be transmitted from infected seeds into roots, shoots and leaves without causing symptoms. Plants in the field trial remained symptomless for approximately four months before symptoms were observed in the crop. Covering the crop during part of the growing season was shown to prevent pathogen growth, despite the use of infected seed, indicating that changes in the physiological condition of the plant and/or environmental conditions may trigger disease development. However, once the disease appeared in the field it quickly became uniform throughout the cropping area. Only small amounts of R. secalis DNA were measured in 24 h spore-trap tape samples using PCR. Inoculum levels equivalent to spore concentrations between 30 and 60 spores per m3 of air were only detected on three occasions during the growing season. The temporal pattern and level of detection of R. secalis DNA in spore tape samples indicated that airborne inoculum was limited and most likely represented rain-splashed conidia rather than putative ascospores.
Resumo:
Sulforaphane, a naturally occurring cancer chemopreventive, is the hydrolysis product of glucoraphanin, the main glucosinolate in broccoli. The hydrolysis requires myrosinase isoenzyme to be present in sufficient activity; however processing leads to its denaturation and hence reduced hydrolysis. In this study, the effect of adding mustard seeds, which has a more resilient isoform of myrosinase, to processed broccoli was investigated with a view to intensify the formation of sulforaphane. Thermal inactivation of myrosinase from both broccoli and mustard seeds was studied. Thermal degradation of broccoli glucoraphanin was investigated in addition to the effects of thermal processing on the formation of sulforaphane and sulforaphane nitrile. Limited thermal degradation of glucoraphanin (less than 12 %) was observed when broccoli was placed in vacuum sealed bag (sous vide) and cooked in a water bath at 100 ºC for 8 and 12 min. Boiling broccoli in water prevented the formation of any significant levels of sulforaphane due to inactivated myrosinase. However, addition of powdered mustard seeds to the heat processed broccoli significantly increased the formation of sulforaphane.
Resumo:
We report evidence that helps resolve two competing explanations for stability in the mutualism between Ficus racemosa fig trees and the Ceratosolen fusciceps wasps that pollinate them. The wasps lay eggs in the tree's ovules, with each wasp larva developing at the expense of a fig seed. Upon maturity, the female wasps collect pollen and disperse to a new tree, continuing the cycle. Fig fitness is increased by producing both seeds and female wasps, whereas short-term wasp fitness increases only with more wasps, thereby resulting in a conflict of interests. We show experimentally that wasps exploit the inner layers of ovules first (the biased oviposition explanation), which is consistent with optimal-foraging theory. As oviposition increases, seeds in the middle layer are replaced on a one-to-one basis by pollinator offspring, which is also consistent with biased oviposition. Finally, in the outer layer of ovules, seeds disappear but are only partially replaced by pollinator offspring, which suggests high wasp mortality (the biased survival or ‘unbeatable seeds’ explanation). Our results therefore suggest that both biased oviposition and biased survival ensure seed production, thereby stabilizing the mutualism. We further argue that biased oviposition can maintain biased survival by selecting against wasp traits to overcome fig defenses. Finally, we report evidence suggesting that F. racemosa balances seed and wasp production at the level of the tree. Because figs are probably selected to allocate equally to male and female function, a 1:1 seed:wasp ratio suggests that fig trees are in control of the mutualism.
Resumo:
Protein tyrosine phosphorylation in angiosperms has been implicated in various physiological processes, including seed development and germination. In conifers, the role of tyrosine phosphorylation and the mechanisms of its regulation are yet to be investigated. In this study, we examined the profile of protein tyrosine phosphorylation in Scots pine seeds at different stages of germination. We detected extensive protein tyrosine phosphorylation in extracts from Scots pine (Pinus sylvestris L.) dormant seeds. In addition, the pattern of tyrosine phosphorylation was found to change significantly during seed germination, especially at earlier stages of post-imbibition which coincides with the initiation of cell division, and during the period of intensive elongation of hypocotyls. To better understand the molecular mechanisms of phosphotyrosine signaling, we employed affinity purification and mass spectrometry for the identification of pTyr-binding proteins from the extracts of Scots pine seedlings. Using this approach, we purified two proteins of 10 and 43 kDa, which interacted specifically with pTyr-Sepharose and were identified by mass spectrometry as P. sylvestris defensin 1 (PsDef1) and aldose 1-epimerase (EC:5.1.3.3), respectively. Additionally, we demonstrated that both endogenous and recombinant PsDef1 specifically interact with pTyr-Sepharose, but not Tyr-beads. As the affinity purification approach did not reveal the presence of proteins with known pTyr binding domains (SH2, PTB and C2), we suggest that plants may have evolved a different mode of pTyr recognition, which yet remains to be uncovered.