753 resultados para Cold-formed steels
Resumo:
An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to particle-antiparticle creation. Also, we analyze the process of intercommuting strings induced by black hole annihilation and merging. Finally, we discuss the consequences for grand unified strings. The process whereby uncorrelated black holes are formed yields a rate which significantly improves over those previously considered, but still not enough to modify string cosmology. 1995 The American Physical Society.
Resumo:
Stable ternary transcription complexes assembled in vitro, using a HeLa whole-cell extract, have been isolated and visualized by electron microscopy. The formation of these stable complexes on the DNA fragment used as template, the 5' end region of the Xenopus laevis vitellogenin gene B2, depends on factors present in the whole-cell extract, RNA polymerase II and at least two nucleotides. Interestingly, bending in the DNA fragment was frequently observed at the binding site of RNA polymerase II. Dinucleotides that can prime initiation within a short sequence of approximately 10 contiguous nucleotides centered around the initiation site used in vivo, also favour the formation of stable complexes. In addition, pre-initiation complexes were isolated and it was shown that factors in the extract involved in their formation are more abundant than the RNA polymerase II molecules available for binding. The possible implication of this observation relative to the in vivo situation is discussed.
Resumo:
The aims of this study were to determine whether responses in myocardial blood flow (MBF) to the cold pressor testing (CPT) method noninvasively with PET correlate with an established and validated index of flow-dependent coronary vasomotion on quantitative angiography. METHODS: Fifty-six patients (57 +/- 6 y; 16 with hypertension, 10 with hypercholesterolemia, 8 smokers, and 22 without coronary risk factors) with normal coronary angiograms were studied. Biplanar end-diastolic images of a selected proximal segment of the left anterior descending artery (LAD) (n = 27) or left circumflex artery (LCx) (n = 29) were evaluated with quantitative coronary angiography in order to determine the CPT-induced changes of epicardial luminal area (LA, mm(2)). Within 20 d of coronary angiography, MBF in the LAD, LCx, and right coronary artery territory was measured with (13)N-ammonia and PET at baseline and during CPT. RESULTS: CPT induced on both study days comparable percent changes in the rate x pressure product (%DeltaRPP, 37% +/- 13% and 40% +/- 17%; P = not significant [NS]). For the entire study group, the epicardial LA decreased from 5.07 +/- 1.02 to 4.88 +/- 1.04 mm(2) (DeltaLA, -0.20 +/- 0.89 mm(2)) or by -2.19% +/- 17%, while MBF in the corresponding epicardial vessel segment increased from 0.76 +/- 0.16 to 1.03 +/- 0.33 mL x min(-1) x g(-1) (DeltaMBF, 0.27 +/- 0.25 mL x min(-1) x g(-1)) or 36% +/- 31% (P <or= 0.0001). However, in normal controls without coronary risk factors (n = 22), the epicardial LA increased from 5.01 +/- 1.07 to 5.88 +/- 0.89 mm(2) (19.06% +/- 8.9%) and MBF increased from 0.77 +/- 0.16 to 1.34 +/- 0.34 mL x min(-1) x g(-1) (74.08% +/- 23.5%) during CPT, whereas patients with coronary risk factors (n = 34) revealed a decrease of epicardial LA from 5.13 +/- 1.48 to 4.24 +/- 1.12 mm(2) (-15.94% +/- 12.2%) and a diminished MBF increase (from 0.76 +/- 0.20 to 0.83 +/- 0.25 mL x min(-1) x g(-1) or 10.91% +/- 19.8%) as compared with controls (P < 0.0001, respectively), despite comparable changes in the RPP (P = NS). In addition, there was a significant correlation (r = 0.87; P <or= 0.0001) between CPT-related percent changes in LA on quantitative angiography and in MBF as measured with PET. CONCLUSION: The observed close correlation between an angiographically established parameter of flow-dependent and, most likely, endothelium-mediated coronary vasomotion and PET-measured MBF further supports the validity and value of MBF responses to CPT as a noninvasively available index of coronary circulatory function.
Resumo:
Rats chronically cannulated in the carotid artery and the muscular branch of the femoral vein were subjected to a cold (4 °C) environment for up to 2 h. The changes in blood flow (measured with 46Sc microspheres) and arterio-venous differences in the concentrations of glucose, lactate, triacylglycerols and amino acids allowed the estimation of substrate (and energy) balances across the hindleg. Mean glucose uptake was 0.28mmol min21, mean lactate release was 0.33mmol min21 and the free fatty acid basal release of 0.31mmol min21 was practically zero upon exposure to the cold; the initial uptake of triacylglycerols gave place to a massive release following exposure. The measurement of PO·, PCO· and pH also allowed the estimation of oxygen, CO2 and bicarbonate balances and respiratory quotient changes across the hindleg. The contribution of amino acids to the energy balance of the hindleg was assumed to be low. These data were used to determine the sources of energy used to maintain muscle shivering with time. Three distinct phases were observed in hindleg substrate utilization. (1) The onset of shivering, with the use of glucose/glycogen and an increase in lactate efflux. Lipid oxidation was practically zero (respiratory quotient near 1), but the uptake of triacylglycerols from the blood remained unchanged. (2) A substrate-energy shift, with drastically decreased use of glucose/glycogen, and of lactate efflux; utilization of triacylglycerol as practically the sole source of energy (respiratory quotient approximately 0.7); decreasing uptake of triacylglycerol and increased tissue lipid mobilization. (3) The onset of a new heat-homeostasis setting for prolonged cold-exposure, with maintenance of muscle energy and heat production based on triacylglycerol utilization and efflux from the hindleg (muscle plus skin and subcutaneous adipose masses) contributing energy to help sustain heat production by the core organs and surrounding brown adipose tissue.
Resumo:
Selostus: Pelto- ja puutarhakasvien kylmänkestävyystutkimus Suomessa
Resumo:
The average thickness of the existing asphalt cement concrete (ACC) along route E66 in Tama County was 156 mm (6.13 in.). The rehabilitation strategy called for widening the base using the top 75 mm (3 in.) of the existing ACC by a recycling process involving cold milling and mixing with additional emulsion/rejuvenator. The material was then placed into a widening trench and compacted to match the level of the milled surface. The project had the following results: (1) Cold recycled ACC pavement provided adequate pavement structure for a low volume road; (2) Premature cracking of the ACC in the widened pavement area was caused by compaction of the mix over a saturated subgrade; and (3) Considerably less transverse and longitudinal cracking was observed with 75 mm (3 in.) of cold recycled ACC and a 50 mm (2 in.) hot mix ACC overlay than with a conventional hot mix overlay with no cold recycling. More research should be done on efficient construction procedures and incorporating longer test sections for proper evaluation.
Resumo:
Most pavement contraction joint seals in Iowa, in general, have been performing in less than a satisfactory manner. The effective life of the seals, in maintaining a watertight joint, has been only from two to five years. In search of improvements, research was proposed to evaluate preformed neoprene joint seals. The performance of those seals was to be compared mainly with the hot poured rubberized asphalt sealants and cold applied silicone sealants or other sealants commonly used at the time this research began. Joint designs and methods of sawing were also investigated. All evaluations were done in new portland cement concrete (PCC) pavements. Three projects were initially selected and each included a research section of joint sealing. Some additional sites were later added for evaluation. Several joint sealants were evaluated at each research site. The various sites included high, medium and low levels of traffic. Evaluations were done over a five-year period. Neoprene joint seals provided better performance than hot or cold field formed joints.
Resumo:
Iowa's secondary roads contain nearly 15,000 bridges which are less than 40 ft (12.2 m) in length. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. Recently a new bridge replacement alternative, called the Air-O-Form method, has emerged which has several potential advantages over box culvert construction. This new technique uses inflated balloons as the interior form in the construction of an arch culvert. Concrete was then shotcreted onto the balloon form. The objective of research project HR-313 was to construct an air formed arch culvert to determine the applicability of the Air-O-Form technique as a county bridge replacement alternative. The project had the following results: The Air-O-Form method can be used to construct a structurally sound arch culvert; and the method must become more economical if it is to compete with box culverts. Continued monitoring should be conducted in order to evaluate the long-term performance of the Air-O-Form method.
Resumo:
Iowa's secondary road network contains nearly 15,000 bridges which are less than 12 m (40 ft) long. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. An alternative to box culverts is the Air-O-Form method of arch culvert construction. The Air-O-Form method has several potential advantages over box culvert construction. The new technique uses inflated balloons as the interior form in the construction of an arch culvert. Concrete is then shotcreted onto the balloon form to complete the arch culvert. The objective of the research project was to construct an air formed arch culvert to determine its applicability as an alternative county bridge replacement technique. The project had the following results: (1) The Air-O-Form method can be used to construct a structurally sound arch culvert; and (2) The method must become more economical if it is to compete with box culverts.
Resumo:
Highway Research Project HR-392 was undertaken to evaluate cold in-place asphalt recycled (CIR) projects in the State of Iowa. The research involved assessment of performance levels, investigation of factors that most influence pavement performance and economy, and development of guidelines for CIR project selection. The performance was evaluated in two ways: Pavement Condition Indices (PCI, U.S. Corps of Engineers) were calculated and overall ratings were given on ride and appearance. A regression analysis was extrapolated to predict the future service life of CIR roads. The results were that CIR roads within the State of Iowa, with less than 2000 annual average daily traffic (AADT), have an average predicted service life of fifteen to twenty-six years. Subgrade stability problems can prevent a CIR project from being successfully constructed. A series of Dynamic Cone Penetrometer (DCP) tests were conducted on a CIR project that experienced varying levels of subgrade failure during construction. Based on this case study, and supporting data, it was determined that the DCP test can be used to evaluate subgrades that have insufficient stability for recycling. Overall, CIR roads in Iowa are performing well. It appears that the development of transverse cracking has been retarded and little rutting has occurred. Contracting agencies must pay special attention to the subgrade conditions during project selection. Because of its performance, CIR is a recommended method to be considered for rehabilitating aged low volume (<2000 AADT) asphalt concrete roads in Iowa.
Resumo:
Since 1987, the Iowa Department of Transportation has based control of hot asphalt concrete mixes on cold feed gradations. This report presents results of comparisons between cold feed gradations and gradations of aggregate from the same material after it has been processed through the plant and laydown machine. Results are categorized based on mix type, plant type, and method of dust control, in an effort to quantify and identify the factors contributing to those changes. Results of the report are: 1. From the 390 sample comparisons made, aggregate degradation due to asphalt plant processing was demonstrated by an average increase of +0.7% passing the #200 sieve and an average increase in surface area of +1.8 sq. ft. per pound of aggregate. 2. Categories with Type A Mix or Recycling as a sorting criteria generally produced greater degradation than categories containing Type B Mixes and/or plants with scrubbers. 3. None of the averages calculated for the categories should be considered unacceptably high, however, it is information that should be considered when making mix changes in the field, selecting asphalt contents for borderline mix designs, or when evaluating potential mix gradation specification or design criteria changes.
Resumo:
Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report summarizes the results of a comprehensive program of field distress surveys, field testing, and laboratory testing for these CIR asphalt roads. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to lengthen the time between rehabilitation cycles and improve the performance and cost-effectiveness of future recycled roads.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.