990 resultados para Cold-formed rectangular hollow section
Resumo:
A hydride cold-trapping technique was developed and optimised for the measurement of urinary arsenic metabolites. The analytical precision of the method was found to be 6.1, 4.0 and 4.8% (n = 5) for inorganic arsenic (As-i), monomethylarsonate (MMA) and dimethylarsinate (DMA), respectively, with recoveries close to 100%, The detection limits were 1.0, 1.3 and 3 ng for As-i, MMA and DMA, respectively. The method was then used to analyse urine samples obtained from three groups of workers for occupational exposure in three companies where copper chrome arsenate was used for timber treatment. The results were compared with those for a normal control group of laboratory workers. Arsenic and its metabolites were also measured in experimental rats given 5 mg As kg(-1) body mass by oral gavage in the form of sodium arsenite, calcium arsenite or sodium arsenate. Occupational workers showed a significantly higher excretion of As-i, Up to two fold increases of urinary As-i excretion in rats compared with control rats were also observed in animals dosed with various forms of arsenicals. The method is suitable for the measurement of arsenic metabolites in urine of both humans and experimental animals.
Resumo:
A simple design process for the design of elliptical cross-section, transverse gradient coils for use in magnetic resonance imaging (MRI) is presented. This process is based on a flexible stochastic optimization method and results in designs of high linearity and efficiency with low switching times. A design study of a shielded, transverse asymmetric elliptical coil set for use in neural imaging is presented and includes the minimization of the torques experienced by the gradient set.
Resumo:
We describe the classical two-dimensional nonlinear dynamics of cold atoms in far-off-resonant donut beams. We show that chaotic dynamics exists there for charge greater than unity, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in the (x,y) plant for charge 2 are simulated. We show that the atoms will accumulate on several ring regions when the system enters a regime of global chaos. [S1063-651X(99)03903-3].
Resumo:
Polymer hydrogels based upon methacrylates are used extensively in the pharmaceutical industry, particularly as controlled release drug delivery systems. These materials are generally prepared by chemically initiated polymerization, but this can lead to the presence of unwanted initiator fragments in the polymer matrix. In the present work, initiation of polymerization by gamma-irradiation of hydroxyethyl methacrylate, with and without added crosslinkers, has been investigated, and the diffusion coefficients for water in the resulting polymers have been measured through mass uptake by the polymers. The diffusion of water in poly(hydroxyethyl methacrylate) at 310 K was found to be Fickian, with a diffusion coefficient of 1.96 +/- 0.1 x 10(11) m(2) s(-1) and an equilibrium water content of 58%, NMR imaging analyses confirmed the adherance to a Fickian model of the diffusion of water into polymer cylinders. The incorporation of small amounts (0.2-0.5 wt%) of added ethyleneglycol-dimethacrylate-based crosslinkers was found to have only a small effect on the diffusion coefficient and the equilibrium water content for the copolymers. (C) 1999 Society of Chemical Industry.
Resumo:
Authigenic carbonate minerals are ubiquitous throughout the Late Permian coal measures of the Bowen Basin, Queensland, Australia. In the northern Bowen Basin, carbonates include the following assemblages: siderite I (delta O-18(SMOW) = +11.4 to + 17%, delta C-13(PDB) = - 5.3 to + 120), Fe-Mg calcite-ankerite-siderite II mineral association (delta O-18(SMOW) = +7.2 to + 10.20, delta C-13(PDB) = 10.9 to - 1.80 for ankerite) and a later calcite (delta O-18(SMOW) = +5.9 to + 14.60, delta C-13(PDB) = -11.4 to + 4.40). In the southern Bowen Basin, the carbonate phase consists only of calcite (delta O-18(SMOW) = +12.5 to + 14.80, delta C-13(PDB) = -19.4 to + 0.80), where it occurs extensively throughout all stratigraphic levels. Siderite I occurs in mudrocks and sandstones and predates all other carbonate minerals. This carbonate phase is interpreted to have formed as an early diagenetic mineral from meteoric waters under cold climate and reducing conditions. Fe-Mg calcite-ankerite-siderite Il occur in sandstones as replacement of volcanic rock fragments. Clay minerals (illite-smectite, chlorite and kaolinite) postdate Ca-Fe-Mg carbonates, and precipitation of the later calcite is associated with clay mineral formation. The Ca-Fe-Mg carbonates and later calcite of the northern Bowen Basin are regarded as having formed as a result of hydrothermal activity during the latest Triassic extensional tectonic event which affected this part of the basin, rather than deep burial diagenesis during the Middle to Late Triassic as previously reported. This hypothesis is based on the timing relationships of the authigenic mineral phases and the low delta O-18 values of ankerite and calcite, together with radiometric dating of illitic clays and recently published regional geological evidence. Following the precipitation of the Ca-Fe-Mg carbonates from strongly O-18-depleted meteoric-hydrothermal fluids, continuing fluid circulation and water-rock interaction resulted in dissolution of these carbonate phases as well as labile fragments of volcaniclastic rocks. Subsequently, the later calcite and day minerals precipitated from relatively evolved (O-18-enriched) fluids. The nearly uniform delta O-18 values of the southern Bowen Basin calcite have been attributed to very low water/rock ratio in the system, where the fluid isotropic composition was buffered by the delta O-18 values of rocks. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
This work presents new Structural data from a high-pressure/low-temperature (HP/LT) metamorphic terrane exposed on the islands of Syros and Sifnos (Cyclades, Greece). The structure and the metamorphism of a relatively coherent HP/LT rock section were studied in order to elucidate how strain was accommodated at deep crustal levels during the formation and exhumation of HP/LT rocks. At least three deformation phases associated with eclogite- and blueschist-facies conditions (P = 8-15 kbar; T = 400-550 degreesC) were recognised. The earliest deformation fabric (S1), preserved as inclusion trails within garnet porphyroblasts, is aligned to define a sub-vertical schistosity (at present orientation), which is frequently orthogonal to the flat matrix schistosity (S2), and may indicate that deep crustal thickening involved upright folding. The currently dominant fabric in the HP rock section, S2, is Usually moderately dipping and locally contains NW-trending glaucophane lineations, symmetric pressure-shadows and eclogitic boudins. The symmetric structures associated with this fabric seem to indicate coaxial vertical thinning, although the existence of non-coaxial structures out of the study area cannot be excluded. Glaucophane-bearing shear bands (S3), with top-to-NW sense of shearing, locally crosscut the earlier structures. The latest recognised fabric (D4) is scarce and often absent within the HP rocks. It is associated with top-to-NE kinematic criteria that formed at greenschist-facies conditions (P = 4-7 kbar; T = 400-450 degreesC). Based on these observations, it is suggested that partitioning of strain occurred at different crustal levels and at different times. Deep crustal deformation was governed by thickening via upright folding followed by coaxial vertical thinning, whereas non-coaxial shearing occurred when the rocks were already exhumed to relatively shallow crustal levels. The earliest fabrics (D1 to D3) pertain to Alpine orogenesis and possibly to syn-orogenic extension, whereas the latest correspond to whole-crust back-are extension. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.
Resumo:
The electrochemical performance of carbon fibers (CF) and boron-doped diamond electrodes grown on carbon fiber substrate (BDD/CF) was studied. CF substrates were obtained from polyacrylonitrile precursor heat treated at two different temperatures of 1000 and 2000 degrees C to produce the desirable CF carbon graphitization index. This graphitization process influenced the CF conductivity and its chemical surface, also analyzed from X-ray photoelectron spectroscopy measurements. These three-dimensional CF structures allowed a high incorporation of diamond films compared to other carbon substrates such as glass carbon or HOPG. The electrochemical responses, from these four classes of electrodes, were evaluated focusing their application as electrical double-layer capacitors using cyclic voltammetry and impedance measurements. Cyclic voltammetry results revealed that the electrode formed from BDD grown on CF-2000 presented a typical capacitor behavior with the best rectangular shape, compared to those electrodes of CF or BDD/CF-1000. Furthermore, the BDD/CF-2000 electrode presented the lowest impedance, associated to its significant capacitance value of 1940 mu F/cm(2) taking into account the BDD films. This behavior was attributed to the strong dependence between diamond coating texture and the CF graphitization temperature. The largest surface area of BDD/CF-2000 was promoted by its singular film growth mechanism associated to the substrate chemical surface. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The interactions between phosphorylcholine-substituted chitosans (PC-CH) and calf-thymus DNA (ct-DNA) were investigated focusing on the effects of the charge ratio, the pH, and phosphorylcholine content on the size and stability of the complexes using the ethidium bromide fluorescence assay, gel electrophoresis, dynamic light scattering. and fluorescence microscopy. The size and colloidal stability of deacetylated chitosan (CH/DNA) and PC-CH/DNA complexes were strongly dependent on phosphorylcholine content, charge ratios, and pH. The interaction strengths were evaluated from ethidium bromide fluorescence, and at N/P ratios higher than 5.0, no DNA release was observed in any synthesized PC-CH/DNA polyplexes by gel electrophoresis. The PC-CH/DNA polyplexes exhibited a higher resistance to aggregation compared to deacetylated chitosan (CH) at neutral pH. At low pH values highly charged chitosan and its phosphorylcholine derivatives had strong binding affinity with DNA, whereas at higher pH Values CH formed large aggregates and only C-CH derivatives were able to form small nanoparticles with hydrodynamic radii varying from 100 to 150 nm. Nanoparticles synthesized at low ionic strength with PC-CH derivatives containing moderate degrees of substitution (DS = 20% and 40%) remained stable for weeks. Photomicroscopies also confirmed that rhodamine-labeled PC(40)CH derivative nanoparticles presented higher colloidal stability than those synthesized using deacetylated chitosan. Accordingly, due to their improved physicochemical properties these phosphorylcholine-modified chitosans provide new perspectives for controlling the properties of polyplexes. (C) 2009 Elsevier Inc. All rights reserved.
The states, diffusion, and concentration distribution of water in radiation-formed PVA/PVP hydrogels
Resumo:
Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1-vinyl-2-pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma-rays from Co-60 sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T-2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range -10 to +10 degrees C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was refer-red to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with F-VP = 0.19 has been estimated to be g(H2O)/g(Polymer) = 0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve-fit of the early-stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5 x 10(-11) m(2) s(-1) and 4.5 x 10(-11) m(2) s(-1), depending on the polymer composition, the cross-link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was approximate to 24 kJ mol(-1). Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.