958 resultados para Classical orthogonal polynomials of a discrete variable
Resumo:
The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalizations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts.
Resumo:
We show how two linearly independent vectors can be used to construct two orthogonal vectors of equal magnitude in a simple way. The proof that the constructed vectors are orthogonal and of equal magnitude is a good exercise for students studying properties of scalar and vector triple products. We then show how this result can be used to prove van Aubel's theorem that relates the two line segments joining the centres of squares on opposite sides of a plane quadrilateral.
Resumo:
It is known that roots can respond to patches of fertility; however, root proliferation is often too slow to exploit resources fully, and organic nutrient patches may be broken down and leached, immobilized or chemically fixed before they are invaded by the root system. The ability of fungal hyphae to exploit resource patches is far greater than that of roots due to their innate physiological and morphological plasticity, which allows comprehensive exploration and rapid colonization of resource patches in soils. The fungal symbionts of ectomycorrhizal plants excrete significant quantities of enzymes such as chitinases, phosphatases and proteases. These might allow the organic residue to be tapped directly for nutrients such as N and P. Pot experiments conducted with nutrient-stressed ectomycorrhizal and control willow plants showed that when high quality organic nutrient patches were added, they were colonized rapidly by the ectomycorrhizal mycelium. These established willows (0.5 m tall) were colonized by Hebeloma syrjense P. Karst. for 1 year prior to nutrient patch addition. Within days after patch addition, colour changes in the leaves of the mycorrhizal plants (reflecting improved nutrition) were apparent, and after I month the concentration of N and P in the foliage of mycorrhizal plants was significantly greater than that in non-mycorrhizal plants subject to the same nutrient addition. It seems likely that the mycorrhizal plants were able to compete effectively with the wider soil microbiota and tap directly into the high quality organic resource patch via their extra-radical mycelium. We hypothesize that ectomycorrhizal plants may reclaim some of the N and P invested in seed production by direct recycling from failed seeds in the soil. The rapid exploitation of similar discrete, transient, high-quality nutrient patches may have led to underestimations when determining the nutritional benefits of ectomycorrhizal colonization.
Resumo:
In this work, we prove a weak Noether-type Theorem for a class of variational problems that admit broken extremals. We use this result to prove discrete Noether-type conservation laws for a conforming finite element discretisation of a model elliptic problem. In addition, we study how well the finite element scheme satisfies the continuous conservation laws arising from the application of Noether’s first theorem (1918). We summarise extensive numerical tests, illustrating the conservation of the discrete Noether law using the p-Laplacian as an example and derive a geometric-based adaptive algorithm where an appropriate Noether quantity is the goal functional.
Resumo:
Partition of Unity Implicits (PUI) has been recently introduced for surface reconstruction from point clouds. In this work, we propose a PUI method that employs a set of well-observed solutions in order to produce geometrically pleasant results without requiring time consuming or mathematically overloaded computations. One feature of our technique is the use of multivariate orthogonal polynomials in the least-squares approximation, which allows the recursive refinement of the local fittings in terms of the degree of the polynomial. However, since the use of high-order approximations based only on the number of available points is not reliable, we introduce the concept of coverage domain. In addition, the method relies on the use of an algebraically defined triangulation to handle two important tasks in PUI: the spatial decomposition and an adaptive polygonization. As the spatial subdivision is based on tetrahedra, the generated mesh may present poorly-shaped triangles that are improved in this work by means a specific vertex displacement technique. Furthermore, we also address sharp features and raw data treatment. A further contribution is based on the PUI locality property that leads to an intuitive scheme for improving or repairing the surface by means of editing local functions.
Resumo:
In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Homogeneous polynomials of degree 2 on the complex Banach space c(0)(l(n)(2)) are shown to have unique norm-preserving extension to the bidual space. This is done by using M-projections and extends the analogous result for c(0) proved by P.-K. Lin.
Resumo:
The use of roll-formed products in automotive, furniture, buildings etc. increases every year due to the low part-production cost and the complicated cross-sections that can be produced. The limitation with roll-forming until recent years is that one could only produce profiles with a constant cross-section in the longitudinal direction. About eight years ago ORTIC AB [1] developed a machine in which it was possible to produce profiles with a variable width (“3D roll-forming”) for the building industry. Experimental equipment was recently built for research and prototyping of profiles with variable cross-section in both width and depth for the automotive industry. The objective with the current study is to investigate the new tooling concept that makes it possible to roll-form hat-profiles, made of ultra high strength steel, with variable cross-section in depth and width. The result shows that it is possible to produce 3D roll-formed profiles with close tolerances.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Variable-Structure Control Design of Switched Systems With an Application to a DC-DC Power Converter
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. In most part, the zeros are explored through an Eigenvalue representation associated with a corresponding Hessenberg rnatrix. Applications to Szego polynomials, para-orthogonal polynomials and polynomials with non-zero complex coefficients are considered. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Szego polynomials with respect to the weight function w(theta) = e(eta theta)[sin(theta/2)](2 lambda), where eta, lambda is an element of R and lambda > -1/2 are considered. Many of the basic relations associated with these polynomials are given explicitly. Two sequences of para-orthogonal polynomials with explicit relations are also given.