843 resultados para Claisen rearrangement


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of similar to 3.5 angstrom in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effective transcriptional response to redox stimuli is of particular importance for Mycobacterium tuberculosis, as it adapts to the environment of host alveoli and macrophages. The M. tuberculosis a factor sigma(L) regulates the expression of genes involved in cell-wall and polyketide syntheses. sigma(L) interacts with the cytosolic anti-sigma domain of a membrane-associated protein, RslA. Here we demonstrate that RslA binds Zn2+ and can sequester sigma(L) in a reducing environment. In response to an oxidative stimulus, proximal cysteines in the CXXC motif of RslA form a disulfide bond, releasing bound Zn2+. This results in a substantial rearrangement of the sigma(L)/RslA complex, leading to an 8-fold decrease in the affinity of RslA for sigma(L). The crystal structure of the -35-element recognition domain of sigma(L), sigma(L)(4), bound to RslA reveals that RslA inactivates sigma(L) by sterically occluding promoter DNA and RNpolymerase binding sites. The crystal structure further reveals that the cysteine residues that coordinate Zn2+ in RslA are solvent exposed in the complex, thus providing a structural basis for the redox sensitivity of RslA. The biophysical parameters of sigma(L)/RslA interactions provide a template for understanding how variations in the rate of Zn2+ release and associated conformational changes could regulate the activity of a Zn2+-associated anti-sigma factor. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric observations on lithium hydrazinium sulphate have shown earlier that it is ferroelectric over a range of temperatures from below −15° C. to above 80° C. and a new type of hydrogen bond rearrangement which would allow the protons to migrate along the chain has also been suggested by others. The infrared spectrum of LiH z S in the form of mull and as single crystal sections parallel and perpendicular to the ‘C’ axis exhibit about 21 well-defined absorption maxima. The position and the width of the maxima agree with the known structure of the crystal according to which the hydrazine group exists in the form of the hydrazinium ion, NH2·NH3+ and the observed N+-H frequencies agree better with the new correlation curve given by R. S. Krishnan and K. Krishnan (1964). However it has been pointed out that from a comparative study of the new infrared spectra of hydrazonium sulphate and lithium ammonium sulphate that the absorption band at 969 cm.−1 is due to N-N stretching vibration and that the fairly intense band between 2050–2170 cm.−1 is due to the bending vibrations of the NH3+ group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several methods were developed for converting isodigitoxigenin (2a) into methyl acetals 4b and 4c. Of these, methanolysis (followed by acetylation) of isodigitoxigenin in the presence of p-toluenesulfonic acid proved most useful. Each isomer reached an equilibrium corresponding to ca. 3:1 acetal 4c to 4b within 15 min in benzene containing p-toluenesulfonic acid. Addition of dihydropyran to the equilibrium mixture resulted in excellent conversion into vinyl ether 5a. Heating either acetal 4b or 4c in benzene containing p-toluenesulfonic acid led to a skeletal rearrangement culminating in formation of C-norcardenolide 6. In addition to results of physical measurements, the structure of spiran 6 was confirmed by degradation to methyl ketone 8. Similar rearrangement of isodigitoxigenin gave spiran 9 accompanied by C-norcardenolide 6. Treating lactone 9 with p-toluenesulfonic acid in methanol-water provided acetals 10a and 10b, which on further contact with p-toluenesulfonic acid in refluxing benzene gave lactone 9 and cardenolide 6. Evidence underlying the stereochemical assignments noted for structures 4, 9, and 10 was also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isolongifolene, C15H24 an artefact from an acid-catalysed rearrangement of longifolene, is shown to be II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure, synthesis, and configuration of the lactone of tricycloekasantalic acid have been described. It has been shown that in the formation of this lactone (XII) from the acids (I) or (II) a rearrangement is involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ORANGE red and amorphous peroxy-titanium complexes of oxalic, malonic and maleic acids1-3, when vacuum-dried, have co-ordinated water molecules firmly bonded to the central titanium atom as shown in formula (I). The peroxy-oxygen from these compounds is slowly lost even at room temperature because of the strained peroxy-group3,4. The compounds, when kept at 95°-100°C. for about three days, give deperoxygenated compounds of the type (II). However, a sample of peroxy-titanium oxalate sealed in a glass tube lost all its peroxy-oxygen in about four years and gave a white crystalline basic oxalate (II). The amorphous nature of the compounds may be due to random hydrogen bonding in the complexes. The crystallinity observed in one of the deperoxygenated titanyl oxalates may be due to the rearrangement of the molecules during ageing for more than four years. The infra-red absorption of these compounds was studied to find out the effect of co-ordination and hydrogen bonding on the infra-red bands of the free water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method for the construction of tricyclo[5.3.1.0(1,5)]undecane and tricyclo[6.3.1.0(1,6)]dodecane frame work has been developed. Thus the alcohols 6, 18, 21 and 29 undergo Lewis acid-catalysed rearrangement to the tricyclic ketones 5, 19, 22 and 30. Dehydrogenation of 22 to the enone 23 proves the synchronous anti-migration of the methanobridge during the skeletal rearrangement. Finally, one carbon homologation of the ketones 5 and 19 leads to the syntheses of 2-norcedrene 4 and some analogues of funebrene 20 and 30.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photophysics and photochemistry of cyclobutanethiones 1-5 have been studied with the view to generalize the a-cleavage reactions of cyclobutanethiones. The above cyclobutanethiones possess a unit intersystem crossing efficiency from S1 to T1, a high self-quenching rate (-4 X lo9 M-' s-'), and a short triplet lifetime (<0.50 ws). Photolysis of 1-5 yields in benzene a product resulting from 1,3-transposition and in methanol two cyclic thioacetals.The origin of these products is traced to the triplet excited state. A mechanistic scheme involving a-cleavage as the primary photoprocess and diradicals and thiacarbenes as intermediates has been formulated to rationalize the formation of thioacetals and rearranged products. The proposed mechanistic scheme is supported by UHF MIND013 calculations performed on four model systems, cyclobutanethiones and 1,3-cyclobutanedithiones 18-21. These calculations indicate that formation of diradical is favored thermodynamically and kinetically for systems analogous to 19 and 21, while rearrangement to thiacarbene is likely only for those similar to 21.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gibbs' energy change for the reaction, 3CoO (r.s.)+1/2O2(g)→Co3O4(sp), has been measured between 730 and 1250 K using a solid state galvanic cell: Pt, CuO+Cu2O|(CaO)ZrO2|CoO+Co3O4,Pt. The emf of this cell varies nonlinearly with temperature between 1075 and 1150 K, indicating a second or higher order phase transition in Co3O4around 1120 (±20) K, associated with an entropy change of ∼43 Jmol-1K-1. The phase transition is accompanied by an anomalous increase in lattice parameter and electrical conductivity. The cubic spinel structure is retained during the transition, which is caused by the change in CO+3 ions from low spin to high spin state. The octahedral site preference energy of CO+3 ion in the high spin state has been evaluated as -24.8 kJ mol-1. This is more positive than the value for CO+2 ion (-32.9 kJ mol-1). The cation distribution therefore changes from normal to inverse side during the phase transition. The transformation is unique, coupling spin unpairing in CO+3 ion with cation rearrangement on the spinel lattice, DTA in pure oxygen revealed a small peak corresponding to the transition, which could be differentiated from the large peak due to decomposition. TGA showed that the stoichiometry of oxide is not significantly altered during the transition. The Gibbs' energy of formation of Co3O4 from CoO and O2 below and above phase transition can be represented by the equations:ΔG0=-205,685+170.79T(±200) J mol-1(730-1080 K) and ΔG0=-157,235+127.53T(±200) J mol-1(1150-1250 K).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of 8-methyl-2-naphthol (4a) with the quinone3 gave a mixture of 8-methyl-2,2-(tetrachlorohenylenedioxy)naphthalen-1(2H)-one (1b) and 8-methyl-1,1-(tetrachloro-o-phenylenedioxy)naphthalen-2(1H)-one (2b) in almost equal amounts. Similarly, reaction of the naphthols (4b), (4d) and (4e) with3 gave the corresponding dienones (1c &2c), (1e &2e) and (1f &2f) in almost equal amounts. Reaction of 8-t-butyl-2-naphthol (4c) with3 gave exclusively 8-t-butyl-2,2-(tetrachloro--henylenedioxy)-naphthalen-1(2H)-one (1d). Oxidation of 3-t-butyl-2-naphthol (4f) with3 gave a mixture of 3-t-butyl-2,2-(tetrachloro-o-phenylendioxy) nephthalene-1(2H)-one(1g) and 3-t-butyl-1,1-(tetrachloro--phenylenedioxy)naphthelen-2 (1H)-one (2g) in the ratio 1∶6. Thus, onlyt-butyl group exherts pronounced steric influence on the rearrangement observed in the reaction of β-naphthol with the quinone3. Structures of all the compounds have been established by spectral data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-humidity monoclinic lysozyme, resulting from a water-mediated transformation, has one of the lowest solvent contents (22% by volume) observed in a protein crystal. Its structure has been solved by the molecular replacement method and refined to an R value of 0.175 for 7684 observed reflections in the 10–1.75 Å resolution shell. 90% of the solvent in the well ordered crystals could be located. Favourable sites of hydration on the protein surface include side chains with multiple hydrogen-bonding centres, and regions between short hydrophilic side chains and the main-chain CO or NH groups of the same or nearby residues. Major secondary structural features are not disrupted by hydration. However, the free CO groups at the C terminii and, to a lesser extent, the NH groups at the N terminii of helices provide favourable sites for water interactions, as do reverse turns and regions which connect β-structure and helices. The hydration shell consists of discontinuous networks of water molecules, the maximum number of molecules in a network being ten. The substrate-binding cleft is heavily hydrated, as is the main loop region which is stabilized by water interactions. The protein molecules are close packed in the crystals with a molecular coordination number of 14. Arginyl residues are extensively involved in intermolecular hydrogen bonds and water bridges. The water molecules in the crystal are organized into discrete clusters. A distinctive feature of the clusters is the frequent occurrence of three-membered rings. The protein molecules undergo substantial rearrangement during the transformation from the native to the low-humidity form. The main-chain conformations in the two forms are nearly the same, but differences exist in the side-chain conformation. The differences are particularly pronounced in relation to Trp 62 and Trp 63. The shift in Trp 62 is especially interesting as it is also known to move during inhibitor binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The liquid and the glassy phases of 2,2-dimethylbutane have been investigated by isothermal isobaric ensemble Monte Carlo simulation. Thermodynamic Properties and radial distribution functions for both the liquid and the glass have been obtained. The radial distribution functions have been classified into three types based on the accessibility of the group. It has been shown that the structure of the Iiquid and the glass can be understood in terms of the above classification of the radial distribution functions. Molecular reorientation plays an important role in the structural rearrangement accompanying glass formation. As much as 35% of the contribution to the increase in the intermolecular interaction energy on vitrification is due to the reorientation of the neighbouring pairs of molecules. The observed changes in the dimerisation energy and the bonding energy distribution function are consistent with the observed structural changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid catalyzed rearrangement of endo 1-methoxytricyclo[6.2.2.0(3,8)]dodec-2-en-10-ol 8c afforded the ketone 9 which has been transformed into (+/-)-norprezizanone 19 thus completing a formal synthesis of (+/-)-zizaene. A key step in this strategy is a stereospecific 1,4-addition of a methyl group

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A short access to homocalystegine analogues silylated at C7 is described. The synthesis involves the desymmetrization of a (phenyldimethylsilyl)methylcycloheptatriene using osmium-mediated dihydroxylation, followed by the diol protection and a cycloaddition involving the remaining diene moiety and an acylnitroso reagent. Additions of the osmium and acylnitroso reagents were shown, through X-ray diffraction studies of the resulting major isomers, to occur anti and syn, respectively, relative to the SiCH2 substituent. N-O bond cleavage on the resulting cycloadduct then produces the aminopolyol having a silylmethyl substituent. Oxidation of the C-Si bond also afforded an access to unusual amino-heptitols having five contiguous stereogenic centers. In the course of this work, we finally observed a unusual rearrangement taking place on cycloheptanone 18 substituted by two acetyl groups and a neighboring Boc-protected amine. A profound reorganization of the substituents on the seven-membered ring effectively took place under acidic conditions (TFA) leading to the thermodynamically more stable homocalystegine-type compound., DFT calculations of the conformational energy of isomeric silyl homocalystegines indicated that the product observed upon the acid-mediated rearrangement was the most stable of a series of analogues with various distributions of substituents along the seven-membered ring backbone. A tentative mechanism is proposed to rationalize the acetate migrations and inversions of the stereochemistry at various stereocenters.