996 resultados para Chicago Ridge
Resumo:
Decomposition of organic matter combined with density stratification generate a pronounced intermediate water oxygen minimum zone (OMZ) in the northwest Indian Ocean. This zone currently lies between water depths of 200 and 2000 m and extends approximately 5000 km southeast from the Arabian coast. Based upon benthic foraminiferal assemblage changes, it has been suggested that this OMZ was even more extensive during the late Miocene-early Pliocene (6.5-3.0 Ma), with a maximum volume and/or intensity at approximately 5.0 Ma. While this inference may contribute to an understanding of the history of northwest Indian Ocean upwelling, corroborating geochemical evidence for this interpretation has heretofore been lacking. Ocean Drilling Program (ODP) sites 752, 754, and 757 on Broken and Ninetyeast ridges are located within central Indian Ocean intermediate water depths (1086-1650 m) but outside the present lateral dimensions of the Indian Ocean OMZ. High-resolution chemical analyses of sediment from these sites indicate significant reductions in the flux of Mn and normalized Mn concentrations between 6.5 and 3.0 Ma that are most pronounced at approximately 5.0 Ma. Because late Miocene-Pliocene paleodepths for these sites were essentially the same as at present and because extremely low sedimentation rates (0.3-1.3 cm/ky) most likely precluded sedimentary metal oxide diagenesis, we suggest that the observed Mn depletions reflect diminished deposition of reducible Mn oxyhydroxide phases within O2 deficient intermediate waters and that this effect was most intense at approximately 5.0 Ma. This interpretation implies that waters with less than 2.0 mL/L O2 extended at least 1500 km beyond their present limits and is consistent with changes in benthic foraminifera assemblages. We further suggest this expanded Indian Ocean OMZ is related to regionally and/or globally increased biological productivity.
Resumo:
A basaltic sequence of Eocene submarine-erupted pyroclastic sediments totals at least 388 m at DSDP Site 253 on the Ninetyeast Ridge. These fossiliferous hyaloclastic sediments have been erupted and fragmented by explosive volcanism (hydroexplosions) in shallow water. The occurrence of interbedded basaltic ash-fall tuffs within the younger horizons of the hyaloclastic sequence marks the emergence of some Ninetyeast Ridge volcanic vents above sea level. Considerable textural variation allows subdivision of the sequence into six informal lithostratigraphic units. Hydrothermal and diagenetic alteration has caused the complete replacement of all original glass by smectites, and the introduction of abundant zeolite and calcite cements. The major and trace element contents of the hyaloclastites vary due to the alteration, and the admixture of biogenous calcite. On a calcium carbonate-free basis systematic variations are recognisable. Mg, Ni, Cr and Cu are enriched, and Li and Zn depleted in the three older units relative to the younger three. The chemical variability is reflected by the development of saponite in the older part of the sequence and montmorillonite in the younger; and by the presence of a quartz-normative basalt flow occurring in Unit II, in contrast to the Mg-rich highly olivine-normative basalt at the base of the sequence. The younger and older parts of the sequence therefore appear to have been derived from magmas of different chemistry. The sequence, like other basaltic rocks recovered from the Ninetyeast Ridge, is enriched in the light relative to the heavy rare earth elements (REE) although the REE contents vary unsystematically with depth, probably because of the high-temperature subaqueous alteration and the presence of biogenous calcite. This REE data indicates that the Ninetyeast Ridge volcanism was different from that which produces mid-ocean ridge basalts.
Resumo:
Bottom sediments of the Markov Deep contain rather large (>0.1 mm) grains of native minerals and intermetallides of noble and nonferrous metals that can be concentrated in placers. Intermetallides of Pt and Fe are likely to be derivates of the gold-hematite-barite assemblage that forms at late (low-depth) stages of hydrothermal massive sulfide formation. Mineral association of native forms of lead, tin, and copper with Zn-bearing copper may be related to hydrothermal transformation of ultrabasic and basic rocks accompanied by massive sulfide copper mineralization. The association of these minerals of native elements in bottom sediments can also serve as a prospecting guide for sulfide mineralization both at the Sierra Leone site, in particular, and on the seafloor, in general.
Resumo:
Layered Fe-Mn crusts from the off-axis region of the first segment of the Central Indian Ridge north of the Rodrigues Triple Junction were studied geochemically and mineralogically. Vernadite (delta-MnO2) is the main mineral oxide phase. 230Thxs and Co concentrations suggest high growth rates of up to 29 mm/Myr and a maximum age of the basal crust layer of 1 Ma. Whereas most of the major and minor elements show concentrations which are typical of hydrogenetic formation, Co, Pb, Ni and Ti concentrations are strikingly lower. Concentrations and distribution of the strictly trivalent rare-earths and yttrium (REY) are typical of hydrogenetic ferromanganese oxide precipitates, but in marked contrast, the crusts are characterized by negative CeSN (shale normalized) anomalies and (Ce/Pr)SN ratios less than unity. Profiles through the crusts reveal only minor variations of the REY distribution and (Ce/Pr)SN ratios range from 0.45 to 0.68 (compared to ratios of up to 2 for typical hydrogenetic crusts from the Central Indian Basin). The apparent bulk partition coefficients between the crusts and seawater suggest that for the strictly trivalent REY the adsorption-desorption equilibrium has been reached. Positive Ce anomalies in the partition coefficient patterns reveal preferential uptake of Ce, but to a lesser extent than in normal hydrogenetic crusts. A new parameter (excess Ce, Cexs) to quantify the degree of decoupling of Ce from REY(III) is established on the basis of partition coefficients. Cexs/Cebulk ratios suggest that the CIR crusts formed by precipitation of Fe-Mn oxides from a hydrothermal plume and that in hydrothermal plumes and normal seawater the enrichment of Ce results from the same oxidative sorption process. The growth rates, calculated with 230Thxs data as well as with the Co formula, are inversely related to Cexs.
Resumo:
Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.
Resumo:
Uranium (U) concentrations and activity ratios (d234U) of authigenic carbonates are sensitive recorders of different fluid compositions at submarine seeps of hydrocarbon-rich fluids ("cold seeps") at Hydrate Ridge, off the coast of Oregon, USA. The low U concentrations (mean: 1.3 ± 0.4 µg/g) and high 234U values (165-317 per mil) of gas hydrate carbonates reflect the influence of sedimentary pore water indicating that these carbonates were formed under reducing conditions below or at the seafloor. Their 230Th/234U ages span a time interval from 0.8 to 6.4 ka and cluster around 1.2 and 4.7 ka. In contrast, chemoherm carbonates precipitate from marine bottom water marked by relatively high U concentrations (mean: 5.2 ± 0.8 µg/g) and a mean d234U ratio of 166 ± 3 per mil. Their U isotopes reflect the d234U ratios of the bottom water being enriched in 234U relative to normal seawater. Simple mass balance calculations based on U concentrations and their corresponding d234U ratios reveal a contribution of about 11% of sedimentary pore water to the bottom water. From the U pore water flux and the reconstructed U pore water concentration a mean flow rate of about 147 ± 68 cm/a can be estimated. 230Th/234U ages of chemoherm carbonates range from 7.3 to 267.6 ka. 230Th/234U ages of two chemoherms (Alvin and SE-Knoll chemoherm) correspond to time intervals of low sealevel stands in marine isotope stages (MIS) 2, 4, 5, 6, 7 and 8. This observation indicates that fluid flow at cold seep sites sensitively reflects pressure changes of the hydraulic head in the sediments. The d18OPDB ratios of the chemoherm carbonates support the hypothesis of precipitation during glacial times. Deviations of the chemoherm d18O values from the marine d18O record can be interpreted as to reflect temporally and spatially varying bottom water and/or vent fluid temperatures during carbonate precipitation between 2.6 and 8.6°C.
Resumo:
Structure of assemblages associated with mussel aggregations of Bathymodiolus azoricus was investigated. Mussel beds were found on hydrothermal vent fields on the Mid-Atlantic Ridge (Menez Gwen, Lucky Strike, and Rainbow) at depths 850-2400 m. The community structure of the mussel bed assemblages varied between studied areas. Large number of species was unique to mussel beds of the Menez Gwen field; the most observed taxa were not specialized hydrothermal species. All other nonunique species were found within the Lucky Strike region. The lowest mussel assemblage structure evenness was observed in the shallowest Menez Gwen area (850 m depth). We assume that two types of mussel assemblages (nematode-dominated and copepod-dominated) exist within the Lucky Strike field. The assemblages of B. azoricus differ significantly from assemblages of B. thermophilus inhabiting Pacific hydrothermal vents.