656 resultados para Chewing Gum
Resumo:
The evaluation of uncertainty associated with an analytic result is an essential part of the measurement process. Recently, several approaches to evaluate the uncertainty in measurement have been developed. Here, the gas chromatography assay uncertainty for natural gas is compared by some of these approaches: the guide to the expression of uncertainty in measurement (GUM) approach, top-down approach (reproducibility estimate from an inter-laboratory study), Barwick & Ellison (data from validation), study of variability and fuzzy approach. The comparison shows that GUM, Barwick & Ellison and fuzzy approaches lead to comparable uncertainty evaluations, which does not happen with the top-down approach and study of variability by the absence of data normality.
Resumo:
The estimation of measurement uncertainty of an analytical result is an important tool to be applied for compliance to ISO IEC 17025. Through the available guides it is possible to establish procedures and criteria for the estimation of measurement uncertainty. This paper presents a case study on the estimation of measurement uncertainty in migration the test of ε-caprolactam from the polyamide 6 packages to fatty foods with determination by GC-FID. The calculation methodology used for the estimation of measurement uncertainty for the migration test was developed based on the guides EURACHEM / CITAC and ISO GUM, taking into account relevant aspects of the migration test. The expanded uncertainty estimated was approximately 23% of the concentration of migration.
Resumo:
This paper describes the evaluation of a method for determination of Cd and Pb in xanthan gum samples by Graphite Furnace Atomic Absorption Spectrometry (GF AAS) using NH4H2PO4 as the chemical modifier. The sample preparation was performed using a reflux system adapted in the digestion tubes. With this system it was possible to increase the temperature of the digester block above the boiling point of the reaction medium, preventing loss of analyte and excessive evaporation of acids during heating. Samples were digested with HNO3 for 3 h in a digester block at 220 ºC. The limits of detection for Cd and Pb were 2.2 and 33.8 ng g-1, respectively. The RSDs for both analytes were, on average, lower than 5.0% and accuracy was verified by recovery tests, yielding values in the 83-100% range.
Resumo:
The microencapsulation of palm oil may be a mechanism for protecting and promoting the controlled release of its bioactive compounds. To optimize the microencapsulation process, it is necessary to accurately quantify the palm oil present both external and internal to the microcapsules. In this study, we developed and validated a spectrophotometric method to determine the microencapsulation efficiency of palm oil by complex coacervation. We used gelatin and gum arabic (1:1) as wall material in a 5% concentration (w/v) and palm oil in the same concentration. The coacervates were obtained at pH 4.0 ± 0.01, decanted for 24 h, frozen (−40 ºC), and lyophilized for 72 h. Morphological analyzes were then performed. We standardized the extraction of the external palm oil through five successive washes with an organic solvent. We then explored the best method for rupturing the microcapsules. After successive extractions with hexane, we determined the amount of palm oil contained in the microcapsules using a spectrophotometer. The proposed method was shown to be of low cost, fast, and easy to implement. In addition, in the validation step, we confirmed the method to be safe and reliable, as it proved to be specific, accurate, precise, and robust.
Resumo:
ABSTRACT2-Phenylethanol (PE) is an aromatic alcohol with a characteristic odor of roses, widely used in food industry to modify certain aroma compositions in formulations with fruit, jam, pudding, and chewing gums, and also in cosmetic and fragrance industry. This compound occurs naturally in low concentrations in some essential oils from flowers and plants. An alternative to plants extraction are biotechnological processes. This study evaluated 2-phenylethanol’s production in cultivation of Saccharomyces cerevisiae in cassava wastewater originated from starch industry. The substrate was supplemented with glucose and L-phenylalanine in order to obtain higher 2-phenylethanol concentrations and better efficiency in glucose/2-phenylethanol conversion. It was performed using Rotatable Center Composite Design and response surface analysis. Cultures were performed under aerobic conditions in a batch system in Erlenmeyer flasks containing 50 mL of medium in shaker at 150 rpm and 24 ± 1 ºC. The highest PE values were obtained with supplementation of 20.0 g.L-1 of glucose and 5.5 g.L-1 of L-phenylalanine, which has been experimentally validated, obtaining a PE production of 1.33 g.L-1 and PE/glucose yield factor of 0.070 g.g-1, equivalent to 74.3 and 89.7% of desirability values according to the validated model.
Anatomical and histological characteristics of teeth in agouti (Dasyprocta prymnolopha Wagler, 1831)
Resumo:
The agouti species Dasyprocta prymnolopha (D. prymnolopha) is a medium-sized rodent, diurnal, and characteristic of northeastern Brazil, south of the Amazon. Several studies have been made on these rodents. However, there is a lack of analysis of masticatory system, in particular morphology of the teeth. Thus, this research seeks to describe anatomical and histological aspects of the agouti teeth. For this purpose, we used adult agouti, in which measurements and descriptions of teeth and dental tissues were made. It was observed that the dental arch of D. prymnolopha comprises of twenty teeth, evenly distributed in the upper and lower arch, being inferior teeth larger than their corresponding higher. The incisors are larger, and between the posterior premolars and molars, there is a gradual increase in length in the anterior-posterior arch. In microscopic examination, a prismatic appearance was observed consisting of enamel prisms arranged in different directions, behind the enamel and dentin with standard tubular dentinal tubules with variable diameter and far between, also showing a sinuous path from the inner portion to the junction with more superficial enamel. Morphological analysis of dental tissues showed that an enamel with structural organization adapted to the act of chewing and high impact dentin compatible with standard tubular function resilience and mechanical damping of masticatory forces, as found in larger animals, confirming the understanding of eating habits that define much of its ecological functions within the ecosystem they inhabit.
Resumo:
A lectin present in the marine red alga Pterocladiella capillacea was purified and characterised by extraction of soluble proteins (crude extract) in 20 mM Tris-HCl buffer, pH 7.5. Among the analysed erythrocytes (human blood group A, B and O and the animals ox, goat, chicken and rabbit) the lectin agglutinated specifically rabbit erythrocytes. The hemagglutinating activity assay showed that the lectin was not dependent on divalent cations and was shown to be inhibited by the glycoproteins avidin and mucin. The purification procedure was conduced by precipitation of the crude extract with 80% saturation ammonium sulfate (F0/80) followed by affinity chromatography on guar-gum column. The lectin of P. capillacea was purified 14.5 fold and had a recovery of 27.4% of the original total specific activity present in the crude extract. The absence of carbohydrate suggested that the lectin is not a glycoprotein. The molecular mass of P. capillacea lectin, determined by gel filtration, was 5.8 kDa. SDS-PAGE in the presence of ß-mercaptoethanol gave one band, indicating that the native lectin is a monomeric protein. The activation energy of denaturation process (D G') was calculated to be 106.87 kJ . mol-1 at 70 ºC.
Viscosity of gums in vitro and their ability to reduce postprandial hyperglycemia in normal subjects
Resumo:
Experiments were carried out in vitro with three viscous polysaccharides (guar gum, pectin, and carboxymethylcellulose (CMC)) of similar initial viscosity submitted to conditions that mimic events occurring in the stomach and duodenum, and their viscosity in these situations was compared to their actions on postprandial hyperglycemia in normal human subjects. Guar gum showed greater viscosity than the other gums during acidification and/or alkalinization and also showed larger effects on plasma glucose levels (35% reduction in maximum rise in plasma glucose) and on the total area under the curve of plasma glucose (control: 20,314 ± 1007 mg dl-1 180 min-1 vs guar gum: 18,277 ± 699 mg dl-1 180 min-1, P<0.01). Pectin, which showed a marked reduction in viscosity at 37oC and after events mimicking those that occur in the stomach and duodenum, did not have a significant effect on postprandial hyperglycemia. The performance of viscosity and the glycemia response to CMC were at an intermediate level between guar gum and pectin. In conclusion, these data suggest that temperature, the process of acidification, alkalinization and exposure to intestinal ions induce different viscosity changes in gums having similar initial viscosity, establishing a direct relationship between a minor decrease of gum viscosity in vitro and a reduction of postprandial hyperglycemia
Resumo:
The present study evaluates the effect of blood volume expansion on the gastrointestinal transit of a charchoal meal (2.5 ml of an aqueous suspension consisting of 5% charcoal and 5% gum arabic) in awake male Wistar rats (200-270 g). On the day before the experiments, the rats were anesthetized with ether, submitted to left jugular vein cannulation and fasted with water ad libitum until 2 h before the gastrointestinal transit measurement. Blood volume expansion by iv infusion of 1 ml/min Ringer bicarbonate in volumes of 3, 4 or 5% body weight delayed gastrointestinal transit at 10 min after test meal administration by 21.3-26.7% (P<0.05), but no effect was observed after 1 or 2% body weight expansion. The effect of blood volume expansion (up to 5% body weight) on gastrointestinal transit lasted for at least 60 min (P<0.05). Mean arterial pressure increased transiently and central venous pressure increased and hematocrit decreased (P<0.05). Subdiaphragmatic vagotomy and yohimbine (3 mg/kg) prevented the delay caused by expansion on gastrointestinal transit, while atropine (0.5 mg/kg), L-NAME (2 mg/kg), hexamethonium (10 mg/kg), prazosin (1 mg/kg) or propranolol (2 mg/kg) were ineffective. These data show that blood volume expansion delays the gastrointestinal transit of a charcoal meal and that vagal and yohimbine-sensitive pathways appear to be involved in this phenomenon. The delay in gastrointestinal transit observed here, taken together with the modifications of gastrointestinal permeability to salt and water reported by others, may be part of the mechanisms involved in liquid excess management.
Resumo:
Policosanol is a mixture of higher aliphatic alcohols purified from sugar cane wax, with cholesterol-lowering effects demonstrable in experimental models and in patients with type II hypercholesterolemia. The protective effects of policosanol on atherosclerotic lesions experimentally induced by lipofundin in rabbits and rats and spontaneously developed in stumptail monkeys have been described. The present study was conducted to determine whether policosanol administered orally to rabbits with exogenous hypercholesterolemia also protects against the development of atherosclerotic lesions. Male New Zealand rabbits weighing 1.5 to 2 kg were randomly divided into three experimental groups which received 25 or 200 mg/kg policosanol (N = 7) orally for 60 days with acacia gum as vehicle or acacia gum alone (control group, N = 9). All animals received a cholesterol-rich diet (0.5%) during the entire period. Control animals developed marked hypercholesterolemia, macroscopic lesions and arterial intimal thickening. Intima thickness was significantly less (32.5 ± 7 and 25.4 ± 4 µm) in hypercholesterolemic rabbits treated with policosanol than in controls (57.6 ± 9 µm). In most policosanol-treated animals, atherosclerotic lesions were not present, and in others, thickness of fatty streaks had less foam cell layers than in controls. We conclude that policosanol has a protective effect on the atherosclerotic lesions occurring in this experimental model.
Resumo:
In recent years, there have been studies that show a correlation between the hyperactivity of children and use of artificial food additives, including colorants. This has, in part, led to preference of natural products over products with artificial additives. Consumers have also become more aware of health issues. Natural food colorants have many bioactive functions, mainly vitamin A activity of carotenoids and antioxidativity, and therefore they could be more easily accepted by the consumers. However, natural colorant compounds are usually unstable, which restricts their usage. Microencapsulation could be one way to enhance the stability of natural colorant compounds and thus enable better usage for them as food colorants. Microencapsulation is a term used for processes in which the active material is totally enveloped in a coating or capsule, and thus it is separated and protected from the surrounding environment. In addition to protection by the capsule, microencapsulation can also be used to modify solubility and other properties of the encapsulated material, for example, to incorporate fat-soluble compounds into aqueous matrices. The aim of this thesis work was to study the stability of two natural pigments, lutein (carotenoid) and betanin (betalain), and to determine possible ways to enhance their stability with different microencapsulation techniques. Another aim was the extraction of pigments without the use of organic solvents and the development of previously used extraction methods. Stability of pigments in microencapsulated pigment preparations and model foods containing these were studied by measuring the pigment content after storage in different conditions. Preliminary studies on the bioavailability of microencapsulated pigments and sensory evaluation for consumer acceptance of model foods containing microencapsulated pigments were also carried out. Enzyme-assisted oil extraction was used to extract lutein from marigold (Tagetes erecta) flower without organic solvents, and the yield was comparable to solvent extraction of lutein from the same flowers. The effects of temperature, extraction time, and beet:water ratio on extraction efficiency of betanin from red beet (Beta vulgaris) were studied and the optimal conditions for maximum yield and maximum betanin concentration were determined. In both cases, extraction at 40 °C was better than extraction at 80 °C and the extraction for five minutes was as efficient as 15 or 30 minutes. For maximum betanin yield, the beet:water ratio of 1:2 was better, with possibly repeated extraction, but for maximum betanin concentration, a ratio of 1:1 was better. Lutein was incorporated into oil-in-water (o/w) emulsions with a polar oil fraction from oat (Avena sativa) as an emulsifier and mixtures of guar gum and xanthan gum or locust bean gum and xanthan gum as stabilizers to retard creaming. The stability of lutein in these emulsions was quite good, with 77 to 91 percent of lutein being left after storage in the dark at 20 to 22°C for 10 weeks whereas in spray dried emulsions the retention of lutein was 67 to 75 percent. The retention of lutein in oil was also good at 85 percent. Betanin was incorporated into the inner w1 water phase of a water1-in-oil-inwater2 (w1/o/w2) double emulsion with primary w1/o emulsion droplet size of 0.34 μm and secondary w1/o/w2 emulsion droplet size of 5.5 μm and encapsulation efficiency of betanin of 89 percent. In vitro intestinal lipid digestion was performed on the double emulsion, and during the first two hours, coalescence of the inner water phase droplets was observed, and the sizes of the double emulsion droplets increased quickly because of aggregation. This period also corresponded to gradual release of betanin, with a final release of 35 percent. The double emulsion structure was retained throughout the three-hour experiment. Betanin was also spray dried and incorporated into model juices with different pH and dry matter content. Model juices were stored in the dark at -20, 4, 20–24 or 60 °C (accelerated test) for several months. Betanin degraded quite rapidly in all of the samples and higher temperature and a lower pH accelerated degradation. Stability of betanin was much better in the spray dried powder, with practically no degradation during six months of storage in the dark at 20 to 24 °C and good stability also for six months in the dark at 60 °C with 60 percent retention. Consumer acceptance of model juices colored with spray dried betanin was compared with similar model juices colored with anthocyanins or beet extract. Consumers preferred beet extract and anthocyanin colored model juices over juices colored with spray dried betanin. However, spray dried betanin did not impart any off-odors or off-flavors into the model juices contrary to the beet extract. In conclusion, this thesis describes novel solvent-free extraction and encapsulation processes for lutein and betanin from plant sources. Lutein showed good stability in oil and in o/w emulsions, but slightly inferior in spray dried emulsions. In vitro intestinal lipid digestion showed a good stability of w1/o/w2 double emulsion and quite high retention of betanin during digestion. Consumer acceptance of model juices colored with spray dried betanin was not as good as model juices colored with anthocyanins, but addition of betanin to real berry juice could produce better results with mixture of added betanin and natural berry anthocyanins could produce a more acceptable color. Overall, further studies are needed to obtain natural colorants with good stability for the use in food products.
Resumo:
The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.
Resumo:
Heart rate (HR) and systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure were recorded by biotelemetry in nine conscious unrestrained sloths for 1 min every 15 min over a 24-h period. The animals were allowed to freely move in an acoustically isolated and temperature-controlled (24 ± 1ºC) experimental room with light-dark cycle (12/12 h). Behavior was closely monitored through a unidirectional visor and classified as resting (sitting or suspended), feeding (chewing and swallowing embauba leaves, Cecropia adenops), or locomotor activity around the tree trunk or on the room floor. Locomotor activity caused statistically significant increases in SBP (+8%, from 121 ± 22 to 131 ± 18 mmHg), DBP (+7%, from 86 ± 17 to 92 ± 10 mmHg), MBP (+8%, from 97 ± 19 to 105 ± 12 mmHg), and HR (+14%, from 84 ± 15 to 96 ± 15 bpm) compared to resting values, indicating a possible major influence of the autonomic nervous system on the modulation of cardiac function during this behavior. During feeding, the increase in blood pressure was even higher (SBP +27%, from 119 ± 21 to 151 ± 21 mmHg; DBP +21%, from 85 ± 16 to 103 ± 15 mmHg; MBP +24%, from 96 ± 17 to 119 ± 17 mmHg), while HR remained at 14% (from 84 ± 15 to 96 ± 10 bpm) above resting values. The proportionally greater increase in blood pressure than in HR during feeding suggests an increase in peripheral vascular resistance as part of the overall response to this behavior.
Resumo:
Caries is a plaque-associated multifactorial chronic disease. Oral hygiene habits, sugar, and oral micobiota interactions are important for caries to occur. Xylitol has been shown to reduce caries mainly due to its effects on mutans streptococci (MS). The purpose of this study was to evaluate the relationship of daily oral health habits and bacterial level on the caries occurrence and to study the effect of xylitol on the composition of oral microflora. A total of 192, 10-12 years old, male school children had been screened for salivary MS. Healthy subjects with high MS counts participated in two parallel double-blinded, randomised, controlled trials. In the first 5-week trial, subjects were assigned into xylitol (n=35) and sorbitol gum (n=38) groups. At baseline, children were examined using International Caries Detection and Assessment System (ICDAS) criteria and interviewed for oral health habits. In the second 4-week trial, subjects were assigned into xylitol (n=25) and saccharine mouthrinse (n=25) groups. In the end of both interventions, saliva samples were collected. The samples were analysed for changes in MS counts and changes in the composition of the oral microbiota assessed by the Human Oral Microbe Identification Microarray (HOMIM). Relationships between daily habits, bacterial levels and caries were evaluated. Daily use of sweets and soft drinks were the habits significantly associated with caries severity measured by ICDAS Caries Index (CI), while toothbrushing was the only habit associated with the low caries severity. Abiotrophia defectiva and Actinomyces meyeri/ A. odontolyticus were significantly higher in caries-affected children while Shuttleworthia satelles was significantly higher in caries-free children. Xylitol showed significant reduction in salivary levels of MS in both trials. No significant effects on other members of the microbiota were found when evaluated by HOMIM. In conclusion, other members of oral microbiota than MS may be associated with caries occurrence or absence. The use of xylitol had significant effect on MS with no effects on the other members of the salivary microbiota.
Resumo:
The maxilla and masseter muscles are components of the stomatognathic system involved in chewing, which is frequently affected by physical forces such as gravity, and by dental, orthodontic and orthopedic procedures. Thyroid hormones (TH) are known to regulate the expression of genes that control bone mass and the oxidative properties of muscles; however, little is known about the effects of TH on the stomatognathic system. This study investigated this issue by evaluating: i) osteoprotegerin (OPG) and osteopontine (OPN) mRNA expression in the maxilla and ii) myoglobin (Mb) mRNA and protein expression, as well as fiber composition of the masseter. Male Wistar rats (~250 g) were divided into thyroidectomized (Tx) and sham-operated (SO) groups (N = 24/group) treated with T3 or saline (0.9%) for 15 days. Thyroidectomy increased OPG (~40%) and OPN (~75%) mRNA expression, while T3 treatment reduced OPG (~40%) and OPN (~75%) in Tx, and both (~50%) in SO rats. Masseter Mb mRNA expression and fiber type composition remained unchanged, despite the induction of hypo- and hyperthyroidism. However, Mb content was decreased in Tx rats even after T3 treatment. Since OPG and OPN are key proteins involved in the osteoclastogenesis inhibition and bone mineralization, respectively, and that Mb functions as a muscle store of O2 allowing muscles to be more resistant to fatigue, the present data indicate that TH also interfere with maxilla remodeling and the oxidative properties of the masseter, influencing the function of the stomatognathic system, which may require attention during dental, orthodontic and orthopedic procedures in patients with thyroid diseases.