982 resultados para Chemical screening
Resumo:
Hydrogels are hydrophilic, three dimensional polymers that imbibe large quantities of water while remaining insoluble in aqueous solutions due to chemical or physical cross-linking. The polymers swell in water or biological fluids, immobilizing the bioactive agent, leading to drug release in a well-defined specific manner. Thus the hydrogels’ elastic properties, swellability and biocompatibility make them excellent formulations for drug delivery. Currently, many drug potencies and therapeutic effects are limited or otherwise reduced because of the partial degradation that occurs before the administered drug reaches the desired site of action. On the other hand, sustained release medications release drugs continually, rather than providing relief of symptoms and protection solely when necessary. In fact, it would be much better if drugs could be administered in a manner that precisely matches physiological needs at desired times and at the desired site (site specific targeting). There is therefore an unmet need to develop controlled drug delivery systems especially for delivery of peptide and protein bound drugs. The purpose of this project is to produce hydrogels for structural drug delivery and time-dependent sustained release of drugs (bioactive agents). We use an innovative polymerisation strategy based on native chemical ligation (NCL) to covalently cross-link polymers to form hydrogels. When mixed in aqueous solution, four armed (polyethylene glycol) amine (PEG-4A) end functionalised with thioester and four branched Nterminal cysteine peptide dendrimers spontaneously conjugated to produce biomimetic hydrogels. These hydrogels showed superior resistance to shear stress compared to an equivalent PEG macromonomer system and were shown to be proteolytically degradable with concomitant release of a model payload molecule. This is the first report of a peptide dendrimers/PEG macromonomer approach to hydrogel production and opens up the prospect of facile hydrogel synthesis together with tailored payload release.
Resumo:
The deformation of rocks is commonly intimately associated with metamorphic reactions. This paper is a step towards understanding the behaviour of fully coupled, deforming, chemically reacting systems by considering a simple example of the problem comprising a single layer system with elastic-power law viscous constitutive behaviour where the deformation is controlled by the diffusion of a single chemical component that is produced during a metamorphic reaction. Analysis of the problem using the principles of non-equilibrium thermodynamics allows the energy dissipated by the chemical reaction-diffusion processes to be coupled with the energy dissipated during deformation of the layers. This leads to strain-rate softening behaviour and the resultant development of localised deformation which in turn nucleates buckles in the layer. All such diffusion processes, in leading to Herring-Nabarro, Coble or “pressure solution” behaviour, are capable of producing mechanical weakening through the development of a “chemical viscosity”, with the potential for instability in the deformation. For geologically realistic strain rates these chemical feed-back instabilities occur at the centimetre to micron scales, and so produce structures at these scales, as opposed to thermal feed-back instabilities that become important at the 100–1000 m scales.
Resumo:
Background The largest proportion of cancer patients are aged 65 years and over. Increasing age is also associated with nutritional risk and multi-morbidities—factors which complicate the cancer treatment decision-making process in older patients. Objectives To determine whether malnutrition risk and Body Mass Index (BMI) are associated with key oncogeriatric variables as potential predictors of chemotherapy outcomes in geriatric oncology patients with solid tumours. Methods In this longitudinal study, geriatric oncology patients (aged ≥65 years) received a Comprehensive Geriatric Assessment (CGA) for baseline data collection prior to the commencement of chemotherapy treatment. Malnutrition risk was assessed using the Malnutrition Screening Tool (MST) and BMI was calculated using anthropometric data. Nutritional risk was compared with other variables collected as part of standard CGA. Associations were determined by chi-square tests and correlations. Results Over half of the 175 geriatric oncology patients were at risk of malnutrition (53.1%) according to MST. BMI ranged from 15.5–50.9kg/m2, with 35.4% of the cohort overweight when compared to geriatric cutoffs. Malnutrition risk was more prevalent in those who were underweight (70%) although many overweight participants presented as at risk (34%). Malnutrition risk was associated with a diagnosis of colorectal or lung cancer (p=0.001), dependence in activities of daily living (p=0.015) and impaired cognition (p=0.049). Malnutrition risk was positively associated with vulnerability to intensive cancer therapy (rho=0.16, p=0.038). Larger BMI was associated with a greater number of multi-morbidities (rho =.27, p=0.001. Conclusions Malnutrition risk is prevalent among geriatric patients undergoing chemotherapy, is more common in colorectal and lung cancer diagnoses, is associated with impaired functionality and cognition and negatively influences ability to complete planned intensive chemotherapy.
Resumo:
In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1% - 78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain.
Resumo:
In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (~ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ~ 300 % in 1h and ~ 40 % degradation during 30 d study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix.
Resumo:
Depression in childhood or adolescence is associated with increased rates of depression in adulthood. Does this justify efforts to detect (and treat) those with symptoms of depression in early childhood or adolescence? The aim of this study was to determine how well symptoms of anxiety/depression (A-D) in early childhood and adolescence predict adult mental health. The study sample is taken from a population-based prospective birth cohort study. Of the 8556 mothers initially approached to participate 8458 agreed, of whom 7223 mothers gave birth to a live singleton baby. Children were screened using modified Child Behaviour Checklist (CBCL) scales for internalizing and total problems (T-P) at age 5 and the CBCL and Youth Self Report (YSR) A-D subscale and T-P scale at age 14. At age 21, a sub-sample of 2563 young adults in this cohort were administered the CIDI-Auto. Results indicated that screening at age 5 would detect few later cases of significant mental ill-health. Using a cut-point of 20% for internalizing at child age 5 years the CBCL had sensitivities of only 25% and 18% for major depression and anxiety disorders at 21 years, respectively. At age 14, the YSR generally performed a little better than the CBCL as a screening instrument, but neither performed at a satisfactory level. Of the children who were categorised as having YSR A-D at 14 years 30% and 37% met DSM-IV criteria for major depression and anxiety disorders, respectively, at age 21. Our findings challenge an existing movement encouraging the detection and treatment of those with symptoms of mental illness in early childhood.
Resumo:
Introduction and Aims: The Indigenous Risk Impact Screen (IRIS) is a validated culturally appropriate and widely used tool in the community for assessing substance use and mental disorder. This research aimed to assess the utility of this tool in an Indigenous prison population. Design and Methods: The study used data collected from a cross-sectional study of mental health among indigenous inmates in Queensland custodial centres (n=395, 84% male). Participants were administered a modified version of the IRIS, and ICD-10 diagnoses of substance use, depressive and anxiety disorders obtained using the Composite International Diagnostic Interview (CIDI). The concurrent validity of the modified IRIS was assessed against those of the CIDI. Results: 312 people screened as high risk for a substance use disorder and 179 were high risk for mental problems. 73% of males and 88% of females were diagnosed with a mental disorder. The IRIS was an effective screener for substance use disorders, with high sensitivity (Se) of 94% and low specificity (Sp) of 33%. The screener was less effective in identifying depression (Se 82%, Sp 59%) and anxiety (Se 68%, Sp 60%). Discussion: The IRIS is the first culturally appropriate screening instrument to be validated for the risk of drug and alcohol and mental disorder among Indigenous adults in custody. Conclusions: This study demonstrated that the IRIS is a valid tool for screening of alcohol and drug use risk among an incarcerated Indigenous population. The IRIS could offer an opportunity to improve the identification, treatment and health outcomes for incarcerated Indigenous adults.
Resumo:
Following the growing need for adoption of alternative fuels, this project aimed at getting more information on the oxidative potential of biodiesel particulate matter. Within this scope, the physical and chemical characteristics of biodiesel PM were analysed which lead to identification of reactive organic fractions. An in-house developed proflurescent nitroxide probe was used. This project further developed in-depth understanding of the chemical mechanisms following the detection of the oxidative potential of PM. This knowledge made a significant contribution to our understanding of processes behind negative health effects of pollution and enabled us to further develop new techniques to monitor it.
Resumo:
We employed a Hidden-Markov-Model (HMM) algorithm in loss of heterozygosity (LOH) analysis of high-density single nucleotide polymorphism (SNP) array data from Non-Hodgkin’s lymphoma (NHL) entities, follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). This revealed a high frequency of LOH over the chromosomal region 11p11.2, containing the gene encoding the protein tyrosine phosphatase receptor type J (PTPRJ). Although PTPRJ regulates components of key survival pathways in B-cells (i.e., BCR, MAPK, and PI3K signaling), its role in B-cell development is poorly understood. LOH of PTPRJ has been described in several types of cancer but not in any hematological malignancy. Interestingly, FL cases with LOH exhibited down-regulation of PTPRJ, in contrast no significant variation of expression was shown in DLBCLs. In addition, sequence screening in Exons 5 and 13 of PTPRJ identified the G973A (rs2270993), T1054C (rs2270992), A1182C (rs1566734), and G2971C (rs4752904) coding SNPs (cSNPs). The A1182 allele was significantly more frequent in FLs and in NHLs with LOH. Significant over-representation of the C1054 (rs2270992) and the C2971 (rs4752904) alleles were also observed in LOH cases. A haplotype analysis also revealed a significant lower frequency of haplotype GTCG in NHL cases, but it was only detected in cases with retention. Conversely, haplotype GCAC was over-representated in cases with LOH. Altogether, these results indicate that the inactivation of PTPRJ may be a common lymphomagenic mechanism in these NHL subtypes and that haplotypes in PTPRJ gene may play a role in susceptibility to NHL, by affecting activation of PTPRJ in these B-cell lymphomas.
Resumo:
Liuwei Dihuang Wan (LWD), a classic Chinese medicinal formulae, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. It has attracted increasingly much attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive and reliable ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight high-definition mass spectrometry (UPLC-ESI-Q-TOF-MS) method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLCTM HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on UPLC-ESI-Q-TOF-MS has been successfully developed for globally identifying multiple-constituents of traditional Chinese medicine prescriptions. This is the first report on systematic analysis of the chemical constituents of LDW. This article is protected by copyright. All rights reserved.
Resumo:
Background: Nutrition screening is usually administered by nurses. However, most studies on nutrition screening tools have not used nurses to validate the tools. The 3-Minute Nutrition Screening (3-MinNS) assesses weight loss, dietary intake and muscle wastage, with the composite score of each used to determine risk of malnutrition. The aim of the study was to determine the validity and reliability of 3-MinNS administered by nurses, who are the intended assessors. Methods: In this cross sectional study, three ward-based nurses screened 121 patients aged 21 years and over using 3-MinNS in three wards within 24 hours of admission. A dietitian then assessed the patients’ nutritional status using Subjective Global Assessment within 48 hours of admission, whilst blinded to the results of the screening. To assess the reliability of 3-MinNS, 37 patients screened by the first nurse were re-screened by a second nurse within 24 hours, who was blinded to the results of the first nurse. The sensitivity, specificity and best cutoff score for 3-MinNS were determined using the Receiver Operator Characteristics Curve. Results: The best cutoff score to identify all patients at risk of malnutrition using 3-MinNS was three, with sensitivity of 89% and specificity of 88%. This cutoff point also identified all (100%) severely malnourished patients. There was strong correlation between 3-MinNS and SGA (r=0.78, p<0.001). The agreement between two nurses conducting the 3-MinNS tool was 78.3%. Conclusion: 3-Minute Nutrition Screening is a valid and reliable tool for nurses to identify patients at risk of malnutrition.
Resumo:
This study aimed to identify new peptide antigens from Chlamydia (C.) trachomatis in a proof of concept approach which could be used to develop an epitope-based serological diagnostic for C. trachomatis related infertility in women. A bioinformatics analysis was conducted examining several immunodominant proteins from C. trachomatis to identify predicted immunoglobulin epitopes unique to C. trachomatis. A peptide array of these epitopes was screened against participant sera. The participants (all female) were categorized into the following cohorts based on their infection and gynecological history; acute (single treated infection with C. trachomatis), multiple (more than one C. trachomatis infection, all treated), sequelae (PID or tubal infertility with a history of C. trachomatis infection), and infertile (no history of C. trachomatis infection and no detected tubal damage). The bioinformatics strategy identified several promising epitopes. Participants who reacted positively in the peptide 11 ELISA were found to have an increased likelihood of being in the sequelae cohort compared to the infertile cohort with an odds ratio of 16.3 (95% c.i. 1.65 – 160), with 95% specificity and 46% sensitivity (0.19-0.74). The peptide 11 ELISA has the potential to be further developed as a screening tool for use during the early IVF work up and provides proof of concept that there may be further peptide antigens which could be identified using bioinformatics and screening approaches.
Resumo:
Chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics (aMD) simulations and X-ray Photoelectron Spectroscopy (XPS). The molecular dynamics simulations showed rapid and spontaneous decomposition of the ionic liquid anion, with subsequent formation of long-lived species such as lithium fluoride. The simulations also revealed the cation to retain its structure by generally moving away from the lithium surface. The XPS experiments showed evidence of decomposition of the anion, consistent with the aMD simulations and also of cation decomposition and it is envisaged that this is due to the longer time scale for the XPS experiment compared to the time scale of the aMD simulation. Overall experimental results confirm the majority of species suggested by the simulation. The rapid chemical decomposition of the ionic liquid was shown to form a solid electrolyte interphase composed of the breakdown products of the ionic liquid components in the absence of an applied voltage.
Resumo:
The effect of storage time on the cyclability of lithium electrodes in an ionic liquid electrolyte, namely 0.5 m LiBF4 in N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl)imide, [C3mpyr+][FSI–], was investigated. A chemical interaction was observed which is time dependent and results in a morphology change of the Li surface due to build up of passivation products over a 12-day period. The formation of this layer significantly impacts on the Li electrode resistance before cycling and the charging/discharging process for symmetrical Li|0.5 m LiBF4 in [C3mpyr+][FSI–]|Li coin cells. Indeed it was found that introducing a rest period between cycling, and thereby allowing the chemical interaction between the Li electrode and electrolyte to take place, also impacted on the charging/discharging process. For all Li surface treatments the electrode resistance decreased after cycling and was due to significant structural rearrangement of the surface layer. These results suggest that careful electrode pretreatment in a real battery system will be required before operation.