832 resultados para Centralized and Distributed Multi-Agent Routing Schemas
Resumo:
In database applications, access control security layers are mostly developed from tools provided by vendors of database management systems and deployed in the same servers containing the data to be protected. This solution conveys several drawbacks. Among them we emphasize: 1) if policies are complex, their enforcement can lead to performance decay of database servers; 2) when modifications in the established policies implies modifications in the business logic (usually deployed at the client-side), there is no other possibility than modify the business logic in advance and, finally, 3) malicious users can issue CRUD expressions systematically against the DBMS expecting to identify any security gap. In order to overcome these drawbacks, in this paper we propose an access control stack characterized by: most of the mechanisms are deployed at the client-side; whenever security policies evolve, the security mechanisms are automatically updated at runtime and, finally, client-side applications do not handle CRUD expressions directly. We also present an implementation of the proposed stack to prove its feasibility. This paper presents a new approach to enforce access control in database applications, this way expecting to contribute positively to the state of the art in the field.
Resumo:
In database applications, access control security layers are mostly developed from tools provided by vendors of database management systems and deployed in the same servers containing the data to be protected. This solution conveys several drawbacks. Among them we emphasize: (1) if policies are complex, their enforcement can lead to performance decay of database servers; (2) when modifications in the established policies implies modifications in the business logic (usually deployed at the client-side), there is no other possibility than modify the business logic in advance and, finally, 3) malicious users can issue CRUD expressions systematically against the DBMS expecting to identify any security gap. In order to overcome these drawbacks, in this paper we propose an access control stack characterized by: most of the mechanisms are deployed at the client-side; whenever security policies evolve, the security mechanisms are automatically updated at runtime and, finally, client-side applications do not handle CRUD expressions directly. We also present an implementation of the proposed stack to prove its feasibility. This paper presents a new approach to enforce access control in database applications, this way expecting to contribute positively to the state of the art in the field.
Resumo:
Part 18: Optimization in Collaborative Networks
Resumo:
Surgical interventions are usually performed in an operation room; however, access to the information by the medical team members during the intervention is limited. While in conversations with the medical staff, we observed that they attach significant importance to the improvement of the information and communication direct access by queries during the process in real time. It is due to the fact that the procedure is rather slow and there is lack of interaction with the systems in the operation room. These systems can be integrated on the Cloud adding new functionalities to the existing systems the medical expedients are processed. Therefore, such a communication system needs to be built upon the information and interaction access specifically designed and developed to aid the medical specialists. Copyright 2014 ACM.
Resumo:
The changing role of agriculture is at the core of transition pathways in many rural areas. Productivism, post-productivism and multifunctionality have been targeted towards a possible conceptualization of the transition happening in rural areas. The factors of change, including productivist and post-productivist trends, are combined in various ways and have gone in quite diverse directions and intensities, in individual regions and localities. Even, in the same holding, productivist and post-productivist strategies can co-exist spatially, temporally, structurally, leading to a higher complexity in changing patterns. In south Portugal extensive landscapes, dominated by traditionally managed agro-forestry systems under a fuzzy land use pattern, multifunctionality at the farm level is indeed conducted by different stakeholders whose interests may or not converge: a multifunctional land management may indeed incorporate post-productivist and productivist agents. These stakeholders act under different levels of ownership, management and use, reflecting a particular land management dynamic, in which different interests may exist, from commercial production to a variety of other functions (hunting, bee-keeping, subsistence farming, etc.), influencing management at the farm level and its supposed transition trajectory. This multistakeholder dynamic is composed by the main land-manager (the one who takes the main decisions), sub land-managers (land-managers under the rules of the main land-manager), workers and users (locals or outsiders), whose interest and action within the holding may vary differently according to future (policy, market, etc.) trends, and therefore reflect more or less resilient systems. The goal of the proposed presentation is to describe the multi-stakeholder relations at the farm level, its spatial expression and the factors influencing the land management system resilience in face of the transition trends in place.
Resumo:
The application of modern ICT technologies is radically changing many fields pushing toward more open and dynamic value chains fostering the cooperation and integration of many connected partners, sensors, and devices. As a valuable example, the emerging Smart Tourism field derived from the application of ICT to Tourism so to create richer and more integrated experiences, making them more accessible and sustainable. From a technological viewpoint, a recurring challenge in these decentralized environments is the integration of heterogeneous services and data spanning multiple administrative domains, each possibly applying different security/privacy policies, device and process control mechanisms, service access, and provisioning schemes, etc. The distribution and heterogeneity of those sources exacerbate the complexity in the development of integrating solutions with consequent high effort and costs for partners seeking them. Taking a step towards addressing these issues, we propose APERTO, a decentralized and distributed architecture that aims at facilitating the blending of data and services. At its core, APERTO relies on APERTO FaaS, a Serverless platform allowing fast prototyping of the business logic, lowering the barrier of entry and development costs to newcomers, (zero) fine-grained scaling of resources servicing end-users, and reduced management overhead. APERTO FaaS infrastructure is based on asynchronous and transparent communications between the components of the architecture, allowing the development of optimized solutions that exploit the peculiarities of distributed and heterogeneous environments. In particular, APERTO addresses the provisioning of scalable and cost-efficient mechanisms targeting: i) function composition allowing the definition of complex workloads from simple, ready-to-use functions, enabling smarter management of complex tasks and improved multiplexing capabilities; ii) the creation of end-to-end differentiated QoS slices minimizing interfaces among application/service running on a shared infrastructure; i) an abstraction providing uniform and optimized access to heterogeneous data sources, iv) a decentralized approach for the verification of access rights to resources.
Resumo:
In this thesis, the optimal operation of a neighborhood of smart households in terms of minimizing the total energy cost is analyzed. Each household may comprise several assets such as electric vehicles, controllable appliances, energy storage and distributed generation. Bi-directional power flow is considered for each household . Apart from the distributed generation unit, technological options such as vehicle-to-home and vehicle-to-grid are available to provide energy to cover self-consumption needs and to export excessive energy to other households, respectively.
Resumo:
Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.
Resumo:
Existing electricity distribution system is under pressure because implementation of distributed generation changes the grid configuration and also because some customers demand for better distribution reliability. In a short term, traditional network planning does not offer techno-economical solutions for the challenges and therefore the idea of microgrids is introduced. Islanding capability of microgrids is expected to enable better reliability by reducing effects of faults. The aim of the thesis is to discuss challenges in integration of microgrids into distribution networks. Study discusses development of microgrid related smart grid features and gives estimation of the guideline of microgrid implementation. Thesis also scans microgrid pilots around the world and introduces the most relevant projects. Analysis reveals that the main focus of researched studies is on low voltage microgrids. This thesis extends the idea to medium voltage distribution system and introduces challenges related to medium voltage microgrid implementation. Differences of centralized and distributed microgrid models are analyzed and the centralized model is discovered to be easiest to implement into existing distribution system. Preplan of medium voltage microgrid pilot is also carried out in this thesis.
Resumo:
Tässä työssä käsitellään lähinnä relaatiomallia hyödyntäviä tiedonhallintajärjestelmiä. Tiedonhallintajärjestelmä hallitsee yleisesti tietokannan luontia, käyttöä ja muutoksia ja relaatiomallia käyttävät tiedonhallintajärjestelmät ovat jo 1970 -luvulta lähtien olleet hallitseva trendi tietokantamarkkinoilla. Työssä otetaan huomioon neljä eri tiedonhallintajärjestelmä-tyyppiä, jotka ovat keskitetyt, hajautetut, tietovarasto ja operatiiviset tiedonhallintajärjestelmät. Työssä selvitetään, miten näitä tiedonhallintajärjestelmiä voi verrata ja mitkä valintakriteerit vaikuttavat niiden valintaan.
Resumo:
Today’s material flow systems for mass customization or dynamic productions are usually realized with manual transportation systems. However new concepts in the domain of material flow and device control like function-oriented modularization and intelligent multi-agent-systems offer the possibility to employ changeable and automated material flow systems in dynamic production structures. These systems need the ability to react on unplanned and unexpected events autonomously.
Resumo:
Los avances en el hardware permiten disponer de grandes volúmenes de datos, surgiendo aplicaciones que deben suministrar información en tiempo cuasi-real, la monitorización de pacientes, ej., el seguimiento sanitario de las conducciones de agua, etc. Las necesidades de estas aplicaciones hacen emerger el modelo de flujo de datos (data streaming) frente al modelo almacenar-para-despuésprocesar (store-then-process). Mientras que en el modelo store-then-process, los datos son almacenados para ser posteriormente consultados; en los sistemas de streaming, los datos son procesados a su llegada al sistema, produciendo respuestas continuas sin llegar a almacenarse. Esta nueva visión impone desafíos para el procesamiento de datos al vuelo: 1) las respuestas deben producirse de manera continua cada vez que nuevos datos llegan al sistema; 2) los datos son accedidos solo una vez y, generalmente, no son almacenados en su totalidad; y 3) el tiempo de procesamiento por dato para producir una respuesta debe ser bajo. Aunque existen dos modelos para el cómputo de respuestas continuas, el modelo evolutivo y el de ventana deslizante; éste segundo se ajusta mejor en ciertas aplicaciones al considerar únicamente los datos recibidos más recientemente, en lugar de todo el histórico de datos. En los últimos años, la minería de datos en streaming se ha centrado en el modelo evolutivo. Mientras que, en el modelo de ventana deslizante, el trabajo presentado es más reducido ya que estos algoritmos no sólo deben de ser incrementales si no que deben borrar la información que caduca por el deslizamiento de la ventana manteniendo los anteriores tres desafíos. Una de las tareas fundamentales en minería de datos es la búsqueda de agrupaciones donde, dado un conjunto de datos, el objetivo es encontrar grupos representativos, de manera que se tenga una descripción sintética del conjunto. Estas agrupaciones son fundamentales en aplicaciones como la detección de intrusos en la red o la segmentación de clientes en el marketing y la publicidad. Debido a las cantidades masivas de datos que deben procesarse en este tipo de aplicaciones (millones de eventos por segundo), las soluciones centralizadas puede ser incapaz de hacer frente a las restricciones de tiempo de procesamiento, por lo que deben recurrir a descartar datos durante los picos de carga. Para evitar esta perdida de datos, se impone el procesamiento distribuido de streams, en concreto, los algoritmos de agrupamiento deben ser adaptados para este tipo de entornos, en los que los datos están distribuidos. En streaming, la investigación no solo se centra en el diseño para tareas generales, como la agrupación, sino también en la búsqueda de nuevos enfoques que se adapten mejor a escenarios particulares. Como ejemplo, un mecanismo de agrupación ad-hoc resulta ser más adecuado para la defensa contra la denegación de servicio distribuida (Distributed Denial of Services, DDoS) que el problema tradicional de k-medias. En esta tesis se pretende contribuir en el problema agrupamiento en streaming tanto en entornos centralizados y distribuidos. Hemos diseñado un algoritmo centralizado de clustering mostrando las capacidades para descubrir agrupaciones de alta calidad en bajo tiempo frente a otras soluciones del estado del arte, en una amplia evaluación. Además, se ha trabajado sobre una estructura que reduce notablemente el espacio de memoria necesario, controlando, en todo momento, el error de los cómputos. Nuestro trabajo también proporciona dos protocolos de distribución del cómputo de agrupaciones. Se han analizado dos características fundamentales: el impacto sobre la calidad del clustering al realizar el cómputo distribuido y las condiciones necesarias para la reducción del tiempo de procesamiento frente a la solución centralizada. Finalmente, hemos desarrollado un entorno para la detección de ataques DDoS basado en agrupaciones. En este último caso, se ha caracterizado el tipo de ataques detectados y se ha desarrollado una evaluación sobre la eficiencia y eficacia de la mitigación del impacto del ataque. ABSTRACT Advances in hardware allow to collect huge volumes of data emerging applications that must provide information in near-real time, e.g., patient monitoring, health monitoring of water pipes, etc. The data streaming model emerges to comply with these applications overcoming the traditional store-then-process model. With the store-then-process model, data is stored before being consulted; while, in streaming, data are processed on the fly producing continuous responses. The challenges of streaming for processing data on the fly are the following: 1) responses must be produced continuously whenever new data arrives in the system; 2) data is accessed only once and is generally not maintained in its entirety, and 3) data processing time to produce a response should be low. Two models exist to compute continuous responses: the evolving model and the sliding window model; the latter fits best with applications must be computed over the most recently data rather than all the previous data. In recent years, research in the context of data stream mining has focused mainly on the evolving model. In the sliding window model, the work presented is smaller since these algorithms must be incremental and they must delete the information which expires when the window slides. Clustering is one of the fundamental techniques of data mining and is used to analyze data sets in order to find representative groups that provide a concise description of the data being processed. Clustering is critical in applications such as network intrusion detection or customer segmentation in marketing and advertising. Due to the huge amount of data that must be processed by such applications (up to millions of events per second), centralized solutions are usually unable to cope with timing restrictions and recur to shedding techniques where data is discarded during load peaks. To avoid discarding of data, processing of streams (such as clustering) must be distributed and adapted to environments where information is distributed. In streaming, research does not only focus on designing for general tasks, such as clustering, but also in finding new approaches that fit bests with particular scenarios. As an example, an ad-hoc grouping mechanism turns out to be more adequate than k-means for defense against Distributed Denial of Service (DDoS). This thesis contributes to the data stream mining clustering technique both for centralized and distributed environments. We present a centralized clustering algorithm showing capabilities to discover clusters of high quality in low time and we provide a comparison with existing state of the art solutions. We have worked on a data structure that significantly reduces memory requirements while controlling the error of the clusters statistics. We also provide two distributed clustering protocols. We focus on the analysis of two key features: the impact on the clustering quality when computation is distributed and the requirements for reducing the processing time compared to the centralized solution. Finally, with respect to ad-hoc grouping techniques, we have developed a DDoS detection framework based on clustering.We have characterized the attacks detected and we have evaluated the efficiency and effectiveness of mitigating the attack impact.
Resumo:
Durante los últimos años, el imparable crecimiento de fuentes de datos biomédicas, propiciado por el desarrollo de técnicas de generación de datos masivos (principalmente en el campo de la genómica) y la expansión de tecnologías para la comunicación y compartición de información ha propiciado que la investigación biomédica haya pasado a basarse de forma casi exclusiva en el análisis distribuido de información y en la búsqueda de relaciones entre diferentes fuentes de datos. Esto resulta una tarea compleja debido a la heterogeneidad entre las fuentes de datos empleadas (ya sea por el uso de diferentes formatos, tecnologías, o modelizaciones de dominios). Existen trabajos que tienen como objetivo la homogeneización de estas con el fin de conseguir que la información se muestre de forma integrada, como si fuera una única base de datos. Sin embargo no existe ningún trabajo que automatice de forma completa este proceso de integración semántica. Existen dos enfoques principales para dar solución al problema de integración de fuentes heterogéneas de datos: Centralizado y Distribuido. Ambos enfoques requieren de una traducción de datos de un modelo a otro. Para realizar esta tarea se emplean formalizaciones de las relaciones semánticas entre los modelos subyacentes y el modelo central. Estas formalizaciones se denominan comúnmente anotaciones. Las anotaciones de bases de datos, en el contexto de la integración semántica de la información, consisten en definir relaciones entre términos de igual significado, para posibilitar la traducción automática de la información. Dependiendo del problema en el que se esté trabajando, estas relaciones serán entre conceptos individuales o entre conjuntos enteros de conceptos (vistas). El trabajo aquí expuesto se centra en estas últimas. El proyecto europeo p-medicine (FP7-ICT-2009-270089) se basa en el enfoque centralizado y hace uso de anotaciones basadas en vistas y cuyas bases de datos están modeladas en RDF. Los datos extraídos de las diferentes fuentes son traducidos e integrados en un Data Warehouse. Dentro de la plataforma de p-medicine, el Grupo de Informática Biomédica (GIB) de la Universidad Politécnica de Madrid, en el cuál realicé mi trabajo, proporciona una herramienta para la generación de las necesarias anotaciones de las bases de datos RDF. Esta herramienta, denominada Ontology Annotator ofrece la posibilidad de generar de manera manual anotaciones basadas en vistas. Sin embargo, aunque esta herramienta muestra las fuentes de datos a anotar de manera gráfica, la gran mayoría de usuarios encuentran difícil el manejo de la herramienta , y pierden demasiado tiempo en el proceso de anotación. Es por ello que surge la necesidad de desarrollar una herramienta más avanzada, que sea capaz de asistir al usuario en el proceso de anotar bases de datos en p-medicine. El objetivo es automatizar los procesos más complejos de la anotación y presentar de forma natural y entendible la información relativa a las anotaciones de bases de datos RDF. Esta herramienta ha sido denominada Ontology Annotator Assistant, y el trabajo aquí expuesto describe el proceso de diseño y desarrollo, así como algunos algoritmos innovadores que han sido creados por el autor del trabajo para su correcto funcionamiento. Esta herramienta ofrece funcionalidades no existentes previamente en ninguna otra herramienta del área de la anotación automática e integración semántica de bases de datos. ---ABSTRACT---Over the last years, the unstoppable growth of biomedical data sources, mainly thanks to the development of massive data generation techniques (specially in the genomics field) and the rise of the communication and information sharing technologies, lead to the fact that biomedical research has come to rely almost exclusively on the analysis of distributed information and in finding relationships between different data sources. This is a complex task due to the heterogeneity of the sources used (either by the use of different formats, technologies or domain modeling). There are some research proyects that aim homogenization of these sources in order to retrieve information in an integrated way, as if it were a single database. However there is still now work to automate completely this process of semantic integration. There are two main approaches with the purpouse of integrating heterogeneous data sources: Centralized and Distributed. Both approches involve making translation from one model to another. To perform this task there is a need of using formalization of the semantic relationships between the underlying models and the main model. These formalizations are also calles annotations. In the context of semantic integration of the information, data base annotations consist on defining relations between concepts or words with the same meaning, so the automatic translation can be performed. Depending on the task, the ralationships can be between individuals or between whole sets of concepts (views). This paper focuses on the latter. The European project p-medicine (FP7-ICT-2009-270089) is based on the centralized approach. It uses view based annotations and RDF modeled databases. The data retireved from different data sources is translated and joined into a Data Warehouse. Within the p-medicine platform, the Biomedical Informatics Group (GIB) of the Polytechnic University of Madrid, in which I worked, provides a software to create annotations for the RDF sources. This tool, called Ontology Annotator, is used to create annotations manually. However, although Ontology Annotator displays the data sources graphically, most of the users find it difficult to use this software, thus they spend too much time to complete the task. For this reason there is a need to develop a more advanced tool, which would be able to help the user in the task of annotating p-medicine databases. The aim is automating the most complex processes of the annotation and display the information clearly and easy understanding. This software is called Ontology Annotater Assistant and this book describes the process of design and development of it. as well as some innovative algorithms that were designed by the author of the work. This tool provides features that no other software in the field of automatic annotation can provide.
Resumo:
In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.