957 resultados para Cell viability
Resumo:
A presença de metais pesados no meio ambiente deve-se, principalmente, a actividades antropogénicas. Ao contrário do Cu e do Zn, que em baixas concentrações são essenciais para o normal funcionamento celular, não se conhece para o chumbo nenhuma função biológica. O chumbo apresenta efeitos tóxicos, e considerado possível agente carcinogéneo, sendo classificado como poluente prioritário pela Agencia de Protecção Ambiental dos EUA (US-EPA). O presente trabalho teve como objetivo avaliar o papel da glutationa e do vacúolo, como mecanismos de defesa, contra os efeitos tóxicos induzidos pelo chumbo, usando como modelo a levedura Saccharomyces cerevisiae. A levedura S. cerevisiae quando exposta a varias concentrações de chumbo, durante 3h, perde a viabilidade e acumula espécies reativas de oxigénio (ROS). O estudo comparativo da perda de viabilidade e acumulação de ROS em células de uma estirpe selvagem (WT) e de estirpes mutantes, incapazes de produzir glutationa devido a uma deficiência no gene GSH1 (gsh1) ou GSH2 (gsh2) mostrou que as estirpes gsh1 ou(gsh2 não apresentavam um aumento da sensibilidade ao efeito toxico do chumbo. No entanto, o tratamento de células da estirpe WT com iodoacetamida (um agente alquilante que induz a depleção de glutationa) aumentou a sensibilidade das células a presença de chumbo. Pelo contrário, o enriquecimento em GSH, através da incubação de células WT com glucose e uma mistura de aminoácidos que constituem a GSH (acido L-glutâmico, L-cisteína e glicina), reduziu o stress oxidativo e a perda de viabilidade induzida por chumbo. A importância do vacúolo, como mecanismo de defesa, foi avaliada através da utilização de um mutante sem qualquer estrutura vacuolar (vps16) ou de mutantes deficientes na subunidade catalítica A (vma1) ou B (vma2) ou no proteolítico - subunidade C (vma3) da V-ATPase. As células da estirpe ƒ´vps16 apresentaram uma elevada suscetibilidade a presença de chumbo. As células das estirpes deficientes na subunidade A, B ou c da V-ATPase, apresentaram uma maior perda de viabilidade, quando expostas a chumbo, do que as células da estirpe WT, mas menor do que a da estirpe vps16 Em conclusão, os resultados obtidos, no seu conjunto, sugerem que a glutationa esta envolvida na defesa contra a toxicidade provocada por chumbo; todavia, a glutationa, por si só, parece não ser suficiente para suster o stress oxidativo e a perda de viabilidade induzida por chumbo. O vacúolo parece constituir um importante mecanismo de defesa contra a toxicidade provocada por chumbo. A V-ATPase parece estar envolvida na compartimentação de chumbo no vacúolo.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
The quest for new antiparasitic alternatives has led researchers to base their studies on insights into biology, host-parasite interactions and pathogenesis. In this context, proteases and their inhibitors are focused, respectively, as druggable targets and new therapy alternatives. Herein, we proposed to evaluate the in vitro effect of the cysteine protease inhibitor E-64 on Giardia trophozoites growth, adherence and viability. Trophozoites (105) were exposed to E-64 at different final concentrations, for 24, 48 and 72 h at 37 °C. In the growth and adherence assays, the number of trophozoites was estimated microscopically in a haemocytometer, whereas cell viability was evaluated by a dye-reduction assay using MTT. The E-64 inhibitor showed effect on growth, adherence and viability of trophozoites, however, its better performance was detected in the 100 µM-treated cultures. Although metronidazole was more effective, the E-64 was shown to be able to inhibit growth, adherence and viability rates by ≥ 50%. These results reveal that E-64 can interfere in some crucial processes to the parasite survival and they open perspectives for future investigations in order to confirm the real antigiardial potential of the protease inhibitors.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
ABSTRACTINTRODUCTION:While no single factor is sufficient to guarantee the success of influenza vaccine programs, knowledge of the levels of immunity in local populations is critical. Here, we analyzed influenza immunity in a population from Southern Brazil, a region with weather conditions that are distinct from those in the rest of country, where influenza infections are endemic, and where greater than 50% of the population is vaccinated annually.METHODS:Peripheral blood mononuclear cells were isolated from 40 individuals. Of these, 20 had received the H1N1 vaccine, while the remaining 20 were unvaccinated against the disease. Cells were stimulated in vitro with the trivalent post-pandemic influenza vaccine or with conserved major histocompatibility complex I (MHC I) peptides derived from hemagglutinin and neuraminidase. Cell viability was then analyzed by [3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide)]-based colorimetric assay (MTT), and culture supernatants were assayed for helper T type 1 (Th1) and Th2-specific cytokine levels.RESULTS:Peripheral blood lymphocytes from vaccinated, but not unvaccinated, individuals exhibited significant proliferation in vitro in the presence of a cognate influenza antigen. After culturing with vaccine antigens, cells from vaccinated individuals produced similar levels of interleukin (IL)-10 and interferon (IFN)-γ, while those from unvaccinated individuals produced higher levels of IFN-γ than of IL-10.CONCLUSIONS:Our data indicate that peripheral blood lymphocytes from vaccinated individuals are stimulated upon encountering a cognate antigen, but did not support the hypothesis that cross-reactive responses related to previous infections can ameliorate the immune response. Moreover, monitoring IL-10 production in vaccinated individuals could comprise a valuable tool for predicting disease evolution.
Resumo:
Acrylic bone cement (BC) is widely used as an anchor of artificial joints. Bacterial infection due to biofilm formation and inflammation are common and difficult to treat problems associated with commercial available BC formulations. Research on novel BC compositions is urgently needed. The main objective of this thesis was to develop a new biocompatible antibiotic-loaded BC with improved release profile. To achieve that aim several additives were incorporated, as an antibiotic (levofloxacin) to combat bacterial growth, an anti-inflammatory drug (diclofenac) to decrease the inflammatory process and two well-known and broadly used biopolymers, alginate and chitosan in order to increase matrix porosity, and in this way to intensify the amount of released drug. Novel BC formulations were tested in order to find the most suitable one that had potential to proceed to clinical application. Numerous tests were conducted as: a) evaluation of drug release profiles in different biomimetic media, b) mechanical and surface studies, c) microbiological activity testing against Staphylococcus aureus and d) in vitro biocompatibility assays (fibroblasts and osteoblasts). In general, the addition of biopolymers increased drug release, didn’t compromised BC mechanical properties and increased BC hydrophilicity. Microbiological testing revealed that Lev[BC]Chi was the only matrix that reduced significantly biofilm formation. On the contrary, alginate and diclofenac loading into BC seemed to increase biofilm growth. Biocompatibility studies showed some decrease in cell viability, in particularly on osteoblasts, mainly due to the high amounts of released drugs. In conclusion, the present work has shown that the matrix with more potential to proceed in further investigations was Lev[BC]Chi. Other conditions (namely additives and drugs concentrations) should be evaluated with the other tested BC matrices before being discharged.
Resumo:
In this work two different procedures to utilize the sol-gel technology were applied to immobilize/encapsulate enzymes and living cells. CO2 has reached levels in the atmosphere that make it a pollutant. New methods to utilize this gas to obtain products of added value can be very important, both from an environmentally point of view and from an economic standpoint. The first goal of this work was to study the first reaction of a sequential, three-step, enzymatic process that carries out the conversion of CO2 to methanol. Of the three oxidoreductases involved, our focus was on formate dehydrogenase (FateDH) that converts CO2 to formate. This reaction requires the presence of the cofactor β-nicotinamide adenine dinucleotide in reduced form (NADH). The cofactor is expensive and unstable. Our experiments were directed towards generating NADH from its oxidized form (NAD+), using glutamate dehydrogenase (GDH). The formation of NADH from NAD+ in aqueous medium was studied with both free and sol-gel entrapped GDH. This reaction was then followed by the conversion of CO2 to formate, catalysed by free or sol-gel entrapped FateDH. The quantification of NADH/NAD+ was made using UV/Vis spectroscopy. Our results showed that it was possible to couple the GDH-catalyzed generation of the cofactor NADH with the FateDH-catalyzed conversion of CO2, as confirmed by the detection of formate in the medium, using High Performance Liquid Chromatography (HPLC). The immobilization of living cells can be advantageous from the standpoint of ease of recovery, reutilization and physical separation from the medium. Also dead cells may not always exhibit enzymatic activities found with living cells. In this work cell encapsulation was performed using Escherichia coli bacteria. To reduce toxicity for living organisms, the sol-gel method was different than for enzymes, and involved the use of aqueous-based precursors. Initial encapsulation experiments and viability tests were carried out with E. coli K12. Our results showed that sol-gel entrapment of the cells was achieved, and that cell viability could be increased with additives, namely betaine that led to greater viability improvement and was selected for further studies. For an approach to “in-cell” Nuclear Magnetic Resonance (NMR) experiments, the expression of the protein ctCBM11 was performed in E. coli BL21. It was possible to obtain an NMR signal from the entrapped cells, a considerable proportion of which remained alive after the NMR experiments. However, it was not possible to obtain a distinctive NMR signal from the target protein to distinguish it from the other proteins in the cell.
Resumo:
AuNPs are versatile systems used for different biomedical application including imaging, drug and gene delivery. These systems support the intracellular transport of active molecules, a step that is considered one of the crucial problems in drug delivery. Nevertheless, in order to design optimal multifunctional AuNPs for specific and efficient nanomedicine applications, the mechanism by which AuNPs interact with living cells must be fully understand. The main goal of this work consisted in the assessment of the cellular uptake mechanism of 14 nm spherical AuNPs by A549 cells, through fluorescent spectroscopy and microscopy, in combination with quantitative analysis by ICP-MS. TAMRA labeled AuNPs were characterized by UV-visible and fluorescent spectroscopy and the final hydrodynamic diameter of 22.5 ± 0.33 nm was obtained by DLS. Regarding the cellular uptake studies, the AuNPs presented a fast cellular uptake kinetics reaching a saturation point after 6 hours of incubation in A549 cells. Further investigation concerning the internalization mechanism of this AuNPs was evaluated using specific inhibitors for different endocytic pathways. Optimal inhibition was achieved using chlorpromazine, inhibitor of clathrin-mediated endocytosis, resulting in a 23.5 % inhibition of AuNPs after 1 hour of incubation. This preliminary result obtained by fluorescent spectroscopy suggests that these AuNPs were predominantly uptake by clathrin-mediated endocytosis, meaning that other endocytic pathways must be involved in the cellular uptake of this AuNPs. In what cell viability is concern, the prepared AuNPs and the endocytic inhibitors revealed no significant effect on the cell viability in A549 cell line.
Resumo:
Widely used in cancer treatment, chemotherapy still faces hindering challenges, ranging from severe induced toxicity to drug resistance acquisition. As means to overcome these setbacks, newly synthetized compounds have recently come into play with the basis of improved pharmacokinetic/pharmacodynamic properties. With this mind-set, this project aimed towards the antiproliferative potential characterization of a group of metallic compounds. Additionally the incorporation of the compounds within a nanoformulation and within new combination strategies with commercial chemotherapeutic drugs was also envisaged. Cell viability assays presented copper (II) compound (K4) as the most promising, presenting an IC50 of 6.10 μM and 19.09 μM for HCT116 and A549 cell line respectively. Exposure in fibroblasts revealed a 9.18 μM IC50. Hoechst staining assays further revealed the compound’s predisposition to induce chromatin condensation and nuclear fragmentation in HCT116 upon exposure to K4 which was later demonstrated by flow cytometry and annexin V-FITC/propidium iodide double staining analysis (under 50 % cell death induction). The compound further revealed the ability to interact with major macromolecules such as DNA (Kb = 2.17x105 M-1), inducing structural brakes and retardation, and further affecting cell cycle progression revealing delay in S-phase. Moreover BSA interactions were also visible however not conclusive. Proteome profiling revealed overexpression of proteins involved in metabolic activity and underexpression of proteins involved in apoptosis thus corroborating Hoechst and apoptosis flow cytometry data. K4 nanoformulation suffered from several hindrances and was ill succeeded in part due to K4’s poor solubility in aqueous buffers. Other approaches were considered in this regard. Combined chemotherapy assays revealed high cytotoxicity for afatinib and lapatinib strategies. Lapatinib and K4 proteome profiling further revealed high apoptosis rates, high metabolic activity and activation of redundant proteins as part of compensatory mechanisms.
Resumo:
Coagulase-negative staphylococci (CoNS) are common bacterial colonisers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterised in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intra-species level. On the other hand, biofilm disruption assays demonstrated important inter- and intra-species differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy (CLSM) experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesised that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.
Resumo:
Specific tissues, such as cartilage undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation - amplitude and frequency - to three dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.
Resumo:
Biofilm research is growing more diverse and dependent on high-throughput technologies and the large-scale production of results aggravates data substantiation. In particular, it is often the case that experimental protocols are adapted to meet the needs of a particular laboratory and no statistical validation of the modified method is provided. This paper discusses the impact of intra-laboratory adaptation and non-rigorous documentation of experimental protocols on biofilm data interchange and validation. The case study is a non-standard, but widely used, workflow for Pseudomonas aeruginosa biofilm development, considering three analysis assays: the crystal violet (CV) assay for biomass quantification, the XTT assay for respiratory activity assessment, and the colony forming units (CFU) assay for determination of cell viability. The ruggedness of the protocol was assessed by introducing small changes in the biofilm growth conditions, which simulate minor protocol adaptations and non-rigorous protocol documentation. Results show that even minor variations in the biofilm growth conditions may affect the results considerably, and that the biofilm analysis assays lack repeatability. Intra-laboratory validation of non-standard protocols is found critical to ensure data quality and enable the comparison of results within and among laboratories.
Resumo:
Background: Prostate cancer (PCa), a highly incident and heterogeneous malignancy, mostly affects men from developed countries. Increased knowledge of the biological mechanisms underlying PCa onset and progression are critical for improved clinical management. MicroRNAs (miRNAs) deregulation is common in human cancers, and understanding how it impacts in PCa is of major importance. MiRNAs are mostly downregulated in cancer, although some are overexpressed, playing a critical role in tumor initiation and progression. We aimed to identify miRNAs overexpressed in PCa and subsequently determine its impact in tumorigenesis. Results: MicroRNA expression profiling in primary PCa and morphological normal prostate (MNPT) tissues identified 17 miRNAs significantly overexpressed in PCa. Expression of three miRNAs, not previously associated with PCa, was subsequently assessed in large independent sets of primary tumors, in which miR-182 and miR-375 were validated, but not miR-32. Significantly higher expression levels of miR-375 were depicted in patients with higher Gleason score and more advanced pathological stage, aswellaswithregionallymph nodesmetastases. Forced expression of miR-375 in PC-3 cells, which display the lowest miR-375 levels among PCa cell lines, increased apoptosis and reduced invasion ability and cell viability. Intriguingly, in 22Rv1 cells, which displayed the highest miR-375 expression, knockdown experiments also attenuated the malignant phenotype. Gene ontology analysis implicated miR-375 in several key pathways deregulated in PCa, including cell cycle and cell differentiation. Moreover, CCND2 was identified as putative miR-375 target in PCa, confirmed by luciferase assay. Conclusions: A dual role for miR-375 in prostate cancer progression is suggested, highlighting the importance of cellular context on microRNA targeting.
Resumo:
Dissertação de mestrado em Bioquímica Aplicada