985 resultados para Carotid Atherosclerosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We propose the use of a retrospectively gated cine fast spin echo (FSE) sequence for characterization of carotid artery dynamics. The aim of this study was to compare cine FSE measures of carotid dynamics with measures obtained on prospectively gated FSE images. METHODS: The common carotid arteries in 10 volunteers were imaged using two temporally resolved sequences: (i) cine FSE and (ii) prospectively gated FSE. Three raters manually traced a common carotid artery area for all cardiac phases on both sequences. Measured areas and systolic-diastolic area changes were calculated and compared. Inter- and intra-rater reliability were assessed for both sequences. RESULTS: No significant difference between cine FSE and prospectively gated FSE areas were observed (P = 0.36). Both sequences produced repeatable cross-sectional area measurements: inter-rater intraclass correlation coefficient (ICC) = 0.88 on cine FSE images and 0.87 on prospectively gated FSE images. Minimum detectable difference (MDD) in systolic-diastolic area was 4.9 mm(2) with cine FSE and 6.4 mm(2) with prospectively gated FSE. CONCLUSION: This cine FSE method produced repeatable dynamic carotid artery measurements with less artifact and greater temporal efficiency compared with prospectively gated FSE. Magn Reson Med 74:1103-1109, 2015. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The present study evaluated the reliability of digital panoramic radiography in the diagnosis of carotid artery calcifications. Materials and Methods Thirty-five patients under high-risk for development of carotid artery calcifications who had digital panoramic radiography were referred to undergo ultrasonography. Thus, 70 arteries were assessed by both methods. The main parameters utilized to evaluate the panoramic radiography reliability in the diagnosis of carotid artery calcifications were accuracy, sensitivity, specificity and positive predictive value of this method as compared with ultrasonography. Additionally, the McNemar's test was utilized to verify whether there was a statistically significant difference between digital panoramic radiography and ultrasonography. Results Ultrasonography demonstrated carotid artery calcifications in 17 (48.57%) patients. Such individuals presented with a total of 29 (41.43%) carotid arteries affected by calcification. Radiography was accurate in 71.43% (n = 50) of cases evaluated. The degree of sensitivity of this method was 37.93%, specificity of 95.12% and positive predictive value of 84.61%. A statistically significant difference (p < 0.001) was observed between the methods evaluated in their capacity to diagnose carotid artery calcifications. Conclusion Digital panoramic radiography should not be indicated as a method of choice in the investigation of carotid artery calcifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Metabolic syndrome (MetS) is a combination of several cardio-metabolic risk factors including obesity, hyperglycemia, hypertension and dyslipidemia. MetS has been associated with increased levels of apolipoprotein B (apoB) and low-density lipoprotein oxidation (OxLDL) and with an increased risk of cardiovascular disease and non-alcoholic fatty liver disease. Aims: To establish the relation of apoB and OxLDL with the MetS development and to determine the status of MetS as a risk factor for adverse liver changes and for subclinical atherosclerosis. Subjects and Methods: The present thesis is part of the two large scale population-based, prospective, observational studies. Cardiovascular Risk in Young Finns study was launched in 1980 including 3,596 subjects aged 3-18 years. Thereafter follow-up studies have been conducted regularly. In the latest follow-ups that were performed in 2001 (N=2,283) and 2007 (N=2,204), non-invasive ultrasound studies were introduced to the study protocol to measure subclinical atherosclerosis i.e. carotid intima-media thickness (IMT), carotid artery distensibility (Cdist) and brachial flow-mediated dilatation (FMD). Alanine-aminotransferase (ALT) and gammaglutamyltransferase (GGT) were measured in 2007 to assess liver function. The Bogalusa Heart Study is a long-term epidemiologic study of cardiovascular risk factors launched in 1972 in a biracial community of Bogalusa, Louisiana, USA. Total of 374 youths (aged 9-18 years at baseline in 1984-88) who underwent non-invasive ultrasound studies of the carotid artery as adults, were included in the analyses of the present thesis. Results: The odds ratios (95% confidence intervals) for MetS incidence during a 6-year follow-up by quartiles of apoB were 2.0(1.0-3.8) for the second quartile, 3.1(1.7-5.7) for the third quartile and 4.2(2.3-7.6) for the fourth quartile. OxLDL was not independently associated with incident MetS. Youth (aged 9-18 years) with MetS or with high body mass index were at 2-3 times the risk of having MetS, high IMT, and type 2 diabetes 24-years later as adults. IMT increased 79±7μm (mean±SEM) in subjects with MetS and 42±2μm in subjects without the MetS (P<0.0001) during 6- years. Subjects who lost the MetS diagnosis during 6-year follow-up had reduced IMT progression compared to persistent MetS group (0.036±0.005vs.0.079±0.010 mm, P=0.001) and reduced Cdist change compared to incident MetS group (-0.12±0.05vs.-0.38±0.10 %/mmHg, P=0.03) over 6-year follow-up. MetS predicted elevated ALT (β±SEM=0.380±0.052, P<0.0001 in men and 0.160±0.052, P=0.002 in women) and GGT (β±SEM=0.240±0.058, P<0.0001 in men and 0.262±0.053, P<0.0001 in women) levels after 6-years. Conclusions: These findings suggest that apoB may give additional information on early metabolic disturbances predisposing MetS. MetS may be used to identify individuals at increased risk of developing atherosclerosis and non-alcoholic liver disease. However, recovery from the MetS may have positive effects on liver and vascular properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To study the stenosis of the carotid arteries in patients with symptomatic peripheral arterial disease.Methods: we assessed 100 consecutive patients with symptomatic peripheral arterial disease in stages of intermittent claudication, rest pain or ulceration. Carotid stenosis was studied by echo-color-doppler, and considered significant when greater than or equal to 50%. We used univariate analysis to select potential predictors of carotid stenosis, later taken to multivariate analysis.Results: The prevalence of carotid stenosis was 84%, being significant in 40% and severe in 17%. The age range was 43-89 years (mean 69.78). Regarding gender, 61% were male and 39% female. Half of the patients had claudication and half had critical ischemia. Regarding risk factors, 86% of patients had hypertension, 66% exposure to smoke, 47% diabetes, 65% dyslipidemia, 24% coronary artery disease, 16% renal failure and 60% had family history of cardiovascular disease. In seven patients, there was a history of ischemic cerebrovascular symptoms in the carotid territory. The presence of cerebrovascular symptoms was statistically significant in influencing the degree of stenosis in the carotid arteries (p = 0.02 at overall assessment and p = 0.05 in the subgroups of significant and non-significant stenoses).Conclusion: the study of the carotid arteries by duplex scan examination is of paramount importance in the evaluation of patients with symptomatic peripheral arterial disease, and should be systematically conducted in the study of such patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute thrombosis can be induced in rabbits by a triggering protocol using Russell's viper venom and histamine given after 8 months of a 1% cholesterol diet and balloon desendothelization. In the present study, we tested the hypothesis that aortic desendothelization performed 4 months before the triggering protocol without a high cholesterol diet is a highly effective and less expensive way of producing arterial atherosclerosis and thrombosis. Nineteen male New Zealand white rabbits on a normal diet were studied. The control group (N = 9) received no intervention during the 4-month observation period, while the other group (N = 10) was submitted to aortic balloon desendothelization using a 4F Fogarty catheter. At the end of this period, all animals were killed 48 h after receiving the first dose of the triggering treatment. Eight of 10 rabbits (80%) in the balloon-trauma group presented platelet-rich arterial thrombosis while none of the animals in the control group had thrombus formation (P<0.01). Thus, this model, using balloon desendothelization without dietary manipulation, induces arterial atherosclerosis and thrombosis and may provide possibilities to test new therapeutic approaches

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transluminal coronary angioplasty is a routine therapeutic intervention in coronary heart disease. Despite the high rate of primary success, restenosis continues to be its major limitation. Porcine models have been considered to be the most adequate experimental models for studying restenosis. One limitation of porcine models is the need for radiological guidance and the expenses involved. The objective of the present study was to adapt an experimental model of angioplasty in the porcine carotid artery that does not require radiological equipment. Eight animals were used to develop the technique of balloon injury to the common carotid artery by dissection without radiological guidance. This technique was then employed in six other animals. Under anesthesia, the left common carotid artery was dissected and incised at the carotid sinus for insertion of an over-the-wire angioplasty balloon towards the aorta. Overstretch injury of the carotid artery was performed under direct visualization. After 30 days, the arteries were excised and pressure-fixated. Uninjured carotid arteries from 3 additional animals were used as controls. A decreased luminal area associated with intimal hyperplasia and medial reaction was observed in all injured arteries. Immunohistochemistry identified the intimal hyperplastic cells as smooth muscle cells. Computerized morphometry of the ballooned segments revealed the following mean areas: lumen 2.12 mm2 (± 1.09), intima 0.22 mm2 (± 0.08), media 3.47 mm2 (± 0.67), and adventitia 1.11 mm2 (± 0.34). Our experimental model of porcine carotid angioplasty without radiological guidance induced a vascular wall reaction and permitted the quantification of this response. This porcine model may facilitate the study of vascular injury and its response to pharmacological interventions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carotid bodies from adult spontaneous insulin-dependent diabetic rats (strain BB/S) were perfusion-fixed at normal arterial blood pressure with 3% phosphate-buffered glutaraldehyde and compared with the organs from control rats (strain BB/Sc) prepared in the same way. Serial 5-µm sections were cut, stained, and using an interactive image analysis system, were analysed to determine the volumes of the carotid body and its vascular and extravascular compartments. There was no evidence of systemic arterial disease in the carotid stem arteries in either group of animals, and the microvasculature of the organs appeared normal by light microscopy. The volume of the carotid body was unchanged 3 months after the onset of diabetes but was increased at 6 months. The total vascular volume of the organ was unchanged, but the volume of the small vessels (5-12 µm) was increased. In the control group the small vessels comprised 5% of the total volume of the carotid body, or about 44% of the vascular compartment. The percentage of small vessels increased at 3 months in the diabetic group, but had returned to normal at 6 months. The extravascular volume followed the same pattern as the total carotid body volume and so did not change appreciably when expressed as a percentage of the total volume of the organ. The increase in size of the carotid body in diabetic rats is due, therefore, to an augmented extravascular volume. In one diabetic specimen the carotid sinus nerve showed signs of diabetic neuropathy, axonal swelling and intramyelinic oedema. The clinical implications of these results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many clinical and epidemiological studies have demonstrated the relationship between serum ferritin and ischemic heart disease. In the present study we evaluated the relationship between coronary heart disease (CHD) and serum ferritin levels in patients submitted to coronary arteriography. We evaluated 307 patients (210 (68.7%) males; median age: 60 years) who were submitted to coronary angiography, measurement of serum ferritin and identification of clinical events of ischemic heart disease. Serum ferritin is reported as quartiles. Ninety-six patients (31.27%) had normal coronary angiography (group 1) and 211 (68.73%) had coronary heart disease (group 2). Of the patients with CHD, 61 (28.9%) had serum ferritin levels higher than 194 ng/ml (4th quartile), as opposed to only 14 (14.58%) of those without CHD (P = 0.0067). In the 2nd quartile, 39 patients (18.48%) had CHD, while 35 patients (36.46%) had normal coronary arteries (P = 0.00064). Multivariate analysis of the data showed that the difference between groups was not statistically significant (P = 0.33). We conclude that there is no independent relationship between coronary heart disease and increased levels of serum ferritin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carotid bodies of rats made chronically hypoxic by breathing 12% O2 in a normobaric chamber (inspired PO2 91 mmHg) were compared with those of controls. Serial 5-µm sections of the organs were examined using an interactive image analysis system. The total volume of the carotid bodies was increased by 64%. The total vascular volume rose by 103% and was likely due to an increase in size of the large vessels (>12 µm lumen diameter) because the small vessel (5-12 µm lumen diameter) volume did not increase significantly while the small vessel density tended to decrease. The extravascular volume was increased by 57%. Expressed as a percentage of the total volume of the organ, the total vascular volume did not change, but the small vessel volume was significantly decreased from 7.83 to 6.06%. The large vessel volume must therefore have been increased. The proportion occupied by the extravascular volume was virtually unchanged (84 vs 82%). In accordance with these findings, the small vessel endothelial surface area per unit carotid body volume was diminished from 95.2 to 76.5 mm-1, while the extravascular area per small vessel was increased from 493 to 641 µm2 or by 30%. In conclusion, the enlargement of the carotid body in chronic hypoxia is most likely due to an increase in total vascular volume, mainly involving the "large" vessels, and to an increase in extravascular volume. This is in contrast to our previously published findings indicating that in the spontaneous insulin-dependent diabetic rat the enlargement of the carotid body is due solely to an increase in extravascular volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is one of the major precursors of atherosclerotic vascular disease, and vascular smooth muscle abnormal cell replication is a key feature of plaque formation. The present study was conducted to examine the relationship between hypertension and smooth muscle cell proliferation after balloon injury and to correlate neointima formation with resting membrane potential of uninjured smooth muscle cells, since it has been suggested that altered vascular function in hypertension may be related to the resetting of the resting membrane potential in spontaneously hypertensive rats (SHR). Neointima formation was induced by balloon injury to the carotid arteries of SHR and renovascular hypertensive rats (1K-1C), as well as in their normotensive controls, i.e., Wistar Kyoto (WKY) and normal Wistar (NWR) rats. After 14 days the animals were killed and the carotid arteries were submitted to histomorphometric and immunohistochemical analyses. Resting membrane potential measurements showed that uninjured carotid arteries from SHR smooth muscle cells were significantly depolarized (-46.5 ± 1.9 mV) compared to NWR (-69 ± 1.4 mV), NWR 1K-1C (-60.8 ± 1.6 mV), WKY (-67.1 ± 3.2 mV) and WKY 1K-1C (-56.9 ± 1.2 mV). The SHR arteries responded to balloon injury with an enhanced neointima formation (neo/media = 3.97 ± 0.86) when compared to arteries of all the other groups (NWR 0.93 ± 0.65, NWR 1K-1C 1.24 ± 0.45, WKY 1.22 ± 0.32, WKY 1K-1C 1.15 ± 0.74). Our results indicate that the increased fibroproliferative response observed in SHR is not related to the hypertensive state but could be associated with the resetting of the carotid smooth muscle cell resting membrane potential to a more depolarized state.