271 resultados para Calymmatobacterium (klebsiella) Granulomatis
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
The albA gene from Klebsiella oxytoca encodes a protein that binds albicidin phytotoxins and antibiotics with high affinity. Previously, it has been shown that shifting pH from 6 to 4 reduces binding activity of AlbA by about 30%, indicating that histidine residues might be involved in substrate binding. In this study, molecular analysis of the albA coding region revealed sequence discrepancies with the albA sequence reported previously, which were probably due to sequencing errors. The albA gene was subsequently cloned from K oxytoca ATCC 13182(T) to establish the revised sequence. Biochemical and molecular approaches were used to determine the functional role of four histidine residues (His(78), HiS(125), HiS(141) and His(189)) in the corrected sequence for AlbA. Treatment of AlbA with diethyl pyrocarbonate (DEPC), a histidine-specific alkylating reagent, reduced binding activity by about 95%. DEPC treatment increased absorbance at 240-244 nm by an amount indicating conversion to N-carbethoxyhistidine of a single histidine residue per AlbA molecule. Pretreatment with albicidin protected AlbA against modification by DEPC, with a 1 : 1 molar ratio of albicidin to the protected histidine residues. Based on protein secondary structure and amino acid surface probability indices, it is predicted that HiS125 might be the residue required for albicidin binding. Mutation of HiS125 to either alanine or leucine resulted in about 32% loss of binding activity, and deletion of HiS125 totally abolished binding activity. Mutation of HiS125 to arginine and tyrosine had no effect. These results indicate that HiS125 plays a key role either in an electrostatic interaction between AlbA and albicidin or in the conformational dynamics of the albicidin-binding site.
Resumo:
Aims: Isolation, identification and characterization of a highly efficient isomaltulose producer. Methods and Results: After an enrichment procedure for bacteria likely to metabolize isomaltulose in sucrose-rich environments, 578 isolates were screened for efficient isomaltulose biosynthesis using an aniline/diphenylamine assay and capillary electrophoresis. An isolate designated UQ68J was exceptionally efficient in sucrose isomerase activity. Conversion of sucrose into isomaltulose by UQ68J (enzyme activity of 90-100 U mg(-1) DW) was much faster than the current industrial strain Protaminobacter rubrum CBS574.77 (41-66 U mg(-1) DW) or a reference strain of Erwinia rhapontici (0.3-0.9 U mg(-1) DW). Maximum yield of isomaltulose at 78-80% of supplied sucrose was achieved in less than half the reaction time needed by CBS574.77, and the amount of contaminating trehalulose (4%) was the lowest recorded from an isomaltulose-producing microbe. UQ68J is a Gram negative, facultatively anaerobic, motile, noncapsulate, straight rod-shaped bacterium producing acid but no gas from glucose. Based on 16S rDNA analysis UQ68J is closest to Klebsiella oxytoca, but it differs from Klebsiella in defining characteristics and most closely resembles Pantoea dispersa in phenotype. Significance and Impact of Study: This organism is likely to have substantial advantage over previously characterized sucrose isomerase producers for the industrial production of isomaltulose.
Resumo:
Acacia angustissima has been proposed as a protein supplement in countries where low quality forages predominate. A number of non-protein amino acids have been identified in the leaves of A. angustissima and these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) has been shown to be the major amino acid in the leaves of A. angustissima. The current study aimed to identify micro-organisms from the rumen environment capable of degrading ADAB by using a defined rumen-simulating media with an amino acid extract from A. angustissima. A mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, however no isolates were able to degrade ADAB in pure culture. This enrichment culture was also able to degrade the non-protein amino acids diaminobutyric acid (DABA) and diaminopropionic acid (DAPA) which have structural similarities to ADAB. Two isolates were obtained which could degrade DAPA. One isolate is a novel Grain-positive rod (strain LPLR3) which belongs to the Firmicutes and is not closely related to any previously isolated bacterium. The other isolate is strain LPSR1 which belongs to the Gammaproteobacteria and is closely related (99.93% similar) to Klebsiella pneumoniae subsp. ozaenae. The studies demonstrate that the rumen is a potential rich source of undiscovered micro-organisms which have novel capacities to degrade plant secondary compounds. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Sucrose isomerase (SI) genes from Pantoea dispersa UQ68J, Klebsiella planticola UQ14S, and Erwinia rhapontici WAC2928 were cloned and expressed in Escherichia coli. The predicted products of the UQ14S and WAC2928 genes were similar to known SIs. The UQ68J SI differed substantially, and it showed the highest isomaltulose-producing efficiency in E. coli cells. The purified recombinant WAC2928 SI was unstable, whereas purified UQ68J and UQ14S SIs were very stable. UQ68J SI activity was optimal at pH 5 and 30 to 35 degrees C, and it produced a high ratio of isomaltulose to trehalulose (> 22:1) across its pH and temperature ranges for activity (pH 4 to 7 and 20 to 50 degrees C). In contrast, UQ14S SI showed optimal activity at pH 6 and 35 degrees C and produced a lower ratio of isomaltulose to trehalulose (< 8:1) across its pH and temperature ranges for activity. UQ68J SI had much higher catalytic efficiency; the K-m was 39.9 mM, the V-max was 638 U mg(-1), and the K-cat/K-m was 1.79 x 104 M-1 s(-1), compared to a K-m of 76.0 mM, a V-max. of 423 U mg(-1), and a K-cat/K-m of 0.62 x 104 M-1 s(-1) for UQ14S SI. UQ68J SI also showed no apparent reverse reaction producing glucose, fructose, or trehalulose from isomaltulose. These properties of the P. dispersa UQ68J enzyme are exceptional among purified SIs, and they indicate likely differences in the mechanism at the enzyme active site. They may favor the production of isomaltulose as an inhibitor of competing microbes in high-sucrose environments, and they are likely to be highly beneficial for industrial production of isomaltulose.
Resumo:
Background The objective of this study was to determine whether neonatal nasogastric enteral feeding tubes are colonised by the opportunistic pathogen Cronobacter spp. (Enterobacter sakazakii) and other Enterobacteriaceae, and whether their presence was influenced by the feeding regime. Methods One hundred and twenty-nine tubes were collected from two neonatal intensive care units (NICU). A questionnaire on feeding regime was completed with each sample. Enterobacteriaceae present in the tubes were identified using conventional and molecular methods, and their antibiograms determined. Results The neonates were fed breast milk (16%), fortified breast milk (28%), ready to feed formula (20%), reconstituted powdered infant formula (PIF, 6%), or a mixture of these (21%). Eight percent of tubes were received from neonates who were 'nil by mouth'. Organisms were isolated from 76% of enteral feeding tubes as a biofilm (up to 107 cfu/tube from neonates fed fortified breast milk and reconstituted PIF) and in the residual lumen liquid (up to 107 Enterobacteriaceae cfu/ml, average volume 250 µl). The most common isolates were Enterobacter cancerogenus (41%), Serratia marcescens (36%), E. hormaechei (33%), Escherichia coli (29%), Klebsiella pneumoniae (25%), Raoultella terrigena (10%), and S. liquefaciens (12%). Other organisms isolated included C. sakazakii (2%),Yersinia enterocolitica (1%),Citrobacter freundii (1%), E. vulneris (1%), Pseudomonas fluorescens (1%), and P. luteola (1%). The enteral feeding tubes were in place between < 6 h (22%) to > 48 h (13%). All the S. marcescens isolates from the enteral feeding tubes were resistant to amoxicillin and co-amoxiclav. Of additional importance was that a quarter of E. hormaechei isolates were resistant to the 3rd generation cephalosporins ceftazidime and cefotaxime. During the period of the study, K. pneumoniae and S. marcescens caused infections in the two NICUs. Conclusion This study shows that neonatal enteral feeding tubes, irrespective of feeding regime, act as loci for the bacterial attachment and multiplication of numerous opportunistic pathogens within the Enterobacteriaceae family. Subsequently, these organisms will enter the stomach as a bolus with each feed. Therefore, enteral feeding tubes are an important risk factor to consider with respect to neonatal infections.
Resumo:
AM-112[1′R,5R,6R)-3-(4-amino-1,1-dimethyl-butyl)-6-(1′- hydroxyethyl)oxapenem-3-carboxylatel is a novel oxapenem compound which possesses potent β-lactamase-inhibitory properties. Fifty-percent inhibitory concentrations (IC50s) of AM-112 for class A enzymes were between 0.16 and 2.24 μM for three enzymes, compared to IC50s of 0.008 to 0.12 μM for clavulanic acid. Against class C and class D enzymes, however, the activity of AM-112 was between 1,000- and 100,000-fold greater than that of clavulanic acid. AM-112 had affinity for the penicillin-binding proteins (PBPs) of Escherichia coli DC0, with PBP2 being inhibited by the lowest concentration of AM-112 tested, 0.1 μg/ml. Ceftazidime was combined with AM-112 at 1:1 and 2:1 ratios in MIC determination studies against a panel of β-lactamase-producing organisms. These studies demonstrated that AM-112 was effective at protecting ceftazidime against extended-spectrum β-lactamase-producing strains and derepressed class C enzyme producers, reducing ceftazidime MICs by 16- and 2,048-fold. Similar results were obtained when AM-112 was combined with ceftriaxone, cefoperazone, or cefepime in a 1:2 ratio. Protection of ceftazidime with AM-112 was maintained against Enterobacter cloacae P99 and Klebsiella pneumoniae SHV-5 in a murine intraperitoneal sepsis model. The 50% effective dose of ceftazidime against E. cloacae P99 and K. pneumoniae SHV-5 was reduced from >100 and 160 mg/kg of body weight to 2 and 33.6 mg/kg, respectively, when it was combined with AM-112 at a 1:1 ratio. AM-112 demonstrates potential as a new β-lactamase inhibitor.
Resumo:
Infection is a major clinical problem associated with the use of intravenous catheters.The efficacy of a direct electric current (10µA, 9V) via electrode-conducting carbon impregnated catheters to prevent colonisation of catheters by micro-organisms was investigated. The range of organisms susceptible to 10µA was determined by a zone of inhibition test. The catheters acting as the anode and the cathode were inserted into a nutrient agar plate inoculated with a lawn of bacteria. There was no zone of inhibition observed around the anode. Organisms susceptible to 10µA at the cathode were Staphylococcus aureus (2 strains), Staphylococcus epidermidis (5 strains), Escherichia coli and Klebsiella pneumoniae (2 strains each), and one strain of the following micro-organisms: Staphylococcus hominis, Proteus mirabilis, Pseudomonas aeruginosa and Candida albicans. The zones ranged from 6 to 16 mm in diameter according to the organisms under test. The zone size was proportional to the amperage (10 - 100 µA) and the number of organisms on the plate. Ten µA did not prevent adhesion of staphylococci to the cathode nor did it affect their growth in nutrient broth. However, it was bactericidal to adherent bacteria on the cathodal catheter and significantly reduced the number of bacteria on the catheter after 4 to 24 h application of electricity. The antimicrobial activity of low amperage electric current under anaerobic conditions and in the absence of chloride ions against bacteria attached to the surface of a current carrying electrode was also investigated.The mechanisms of the bactericidal activity associated with the cathode were investigated with S. epidermidis and S. aureus. The inhibition zone was greatly reduced in the presence of catalase. There was no zone around the cathode when the test was carried out under anaerobic conditions. Hydrogen peroxide was produced at the cathode surface under aerobic conditions, but not in the absence of oxygen. A salt-bridge apparatus was used to demonstrate further that hydrogen peroxide was produced at the cathode, and chlorine at the anode. The antimicrobial activity of low amperage electric current under anaerobic conditions and in the absence of chloride ions against bacteria attached to the surface of a current carrying electrode was also investigated. Antibacterial activity was reduced under anaerobic conditions, which is compatible with the role of hydrogen peroxide as a primary bactericidal agent of electricity associated with the cathode. A reduction in chloride ions did not significantly reduce the antibacterial activity suggesting chlorine plays only a minor role in the bactericidal activity against organisms attached to anodal electrode surfaces. The bactericidal activity of electric current associated with the cathode and H202 was greatly reduced in the presence of 50 μM to 0.5 mM magnesium ions in the test menstrum. Ten μA applied via the catheters did not prevent the initial biofilm growth by the adherent bacteria but reduced the number of bacteria in the biofilm by 2 log order aiter 24 h. The results suggested that 10 μA may prevent the colonisation of catheters by both the extra~ and intra-luminal routes. The localised production of hydrogen peroxide and chlorine and the intrinsic activity due to electric current may offer a useful method for the eradication of bacteria from catheter surfaces.
Resumo:
Background Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novelN-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest. Results By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the generaAcinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens. Conclusions Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community.
Resumo:
The advancement of nanotechnology in the synthesis and characterisation of nanoparticles (NP's) has played an important role in the development of new technologies for various applications of nano-scale materials that have unique properties. The scientific development in the last decades in the field of nanotechnology has sought ceaselessly, the discovery of new materials for the most diverse applications, such as biomedical areas, chemical, optical, mechanical and textiles. The high bactericidal efficiency of metallic nanoparticles (Au and Ag), among other metals is well known, due to its ability to act in the DNA of fungi, viruses and bacteria, interrupting the process of cellular respiration, making them important means of study, in addition to its ability to protect UVA and UVB. The present work has as its main objective the implementation of an innovative method in the impregnation of nanoparticles of gold in textile substrate, functionalized with chitosan, by a dyeing process by exhaustion, with the control of temperature, time and velocity, thus obtaining microbial characteristics and UV protection. The exhausted substrates with colloidal solutions of NPAu's presented the colours, lilac and red (soybean knits) due to their surface plasmon peak around 520-540 nm. The NPAu's were synthesized chemically, using sodium citrate as a reducing agent and stabilizer. The material was previously cationised with chitosan, a natural polyelectrolyte, with the purpose of functionalising it to enhance the adsorption of colloid, at concentrations of 5, 7, 10 and 20 % of the bonding agent on the weight of the material (OWM). It was also observed, through an experimental design 23 , with 3 central points, which was the best process of exhaustion of the substrates, using the following factors: Time (min.), temperature (OC) and concentration of the colloid (%), having as a response to variable K/S (ABSORBÂNCIA/ Kubelka-Munk) of the fibres. Furthermore, it was evidenced as the best response, the following parameters: concentration 100%, temperature 70 ºC and time 30 minutes. The substrate with NPAu was characterised by XRD; thermal analysis using TGA; microstructural study using SEM/EDS and STEM, thus showing the NP on the surface of the substrate confirming the presence of the metal. The substrates showed higher washing fastness, antibacterial properties and UV radiation protection.
Resumo:
Fucans, sulphated polysaccharides that contain L-fucose in its constitution, obtained from species of Phaeophyceae of the Sargassum kind, display several biological activities. Heterofucans from Sargassum filipendula are bioactive molecules that contain strong antiproliferative and antioxidant activity. However, their immunomodulatory and antimicrobial activities have not yet been examined. In this context, the aim of this research was to evaluate the heterofucans as for their immunomodulatory capacity and antimicrobial action against Leishmania infantum, Trichomonas vaginalis, Staphylococcus epidermidis and Klebsiella pneumonia (KPC). The five heterofucans obtained from S. filipendula show activities that are distant as stimulants of the immune system and microbial agent. The SF0.5V, SF0.7V amd SF1.0V heterofucans were capable of acting in the activation of murine and human macrophages. In addition to that, SF0.5V has shown antibiofilm activity of S. epidermides and SF0.7V and 1.0V almost completely inhibited the survival of the protozoan T. vaginalis. Results such as this one, reflect the broad range of action of the sulphated polysaccharides obtained from seaweeds, especially from the species S.filipendula
Resumo:
This study aimed to extract, characterize and conduct a prospective analysis of pharmacological activities of sulfated polysaccharides from green seaweed Caulerpa prolifera. Seven fractions (CP-0.3/CP-0.5/CP-0.7/CP-0.9/CP-1.1/CP-1.5/CP-2.0) were obtained from C. prolifera by alkaline proteolysis followed by sequential precipitation in acetone. The physicochemical analyzes indicated that C. prolifera synthesizes a homogalactan (CP-0.9) and different populations of sulfated heteropolysaccharides. In the analysis of anticoagulant activity, all fractions except CP-0.3, influenced the intrinsic coagulation pathway. All fractions showed antioxidant activity in six different assays being more pronounced in hydrogen peroxide scavenging assay, especially CP-0.3, CP-0.7 and CP-0.9 (which obtained 61% of hydrogen peroxide scavenging), in ferric chelation assay (especially CP-0.9 with 56% chelation) and cupric chelation assay (especially CP-2.0 with 78% chelation). With respect to immunomodulatory activity, the presence of CP-0.3, CP-0.7 and CP-0.9 showed an immunogenic potential, increasing the production of nitric oxide (NO) by 48, 142 and 163 times, respectively. Conversely, the NO synthesis fell 73% after the activation of macrophages by LPS, incubated concurrently with CP-2.0. The anti-adipogenic activity of the fractions was also evaluated and CP-1.5 was able to reduce the differentiation of pre-adipocytes (3T3-L1) into adipocytes by 60%, without affecting the cell viability. The fractions CP-0.3, CP-0.5 and CP-0.9 reduced the viability of the HeLa cells (human cervical adenocarcinoma) by 55% and CP-1.5 reduced the viability of the 786-0 cells (human renal adenocarcinoma) by 75%. Leishmanicidal activity and microbicide effect against Carbapenem-resistant Klebsiella pneumoniae (KPC) have not been identified. However, the viability of Staphylococcus epidermidis was reduced by 23.8% in the presence of CP -1.5. All fractions were able to change the formation of calcium oxalate crystals. CP-0.3, CP-0.5 and CP-1.1 only promoted the formation of COD type crystals with a very small size (1 μm). Confocal microscopy and zeta potential data of crystals formed in the presence of the samples showed that the polysaccharides present in the fractions must interact with calcium ions present throughout the crystal lattice, affecting the growth and morphology of crystals The results described herein indicate that the fractions rich in polysaccharides obtained from the green seaweed C. prolifera present a multi therapeutic potential, and subsequent purification steps, as well as research on the mechanisms of action by which these polymers act should be investigated.
Resumo:
The inefficiency of chemical pesticides to control phytopathogenic fungi in agriculture and the frequent incidence of human diseases caused by bacteria which are resistant to antibiotics lead to the search for alternative antimicrobial compounds. In this context, plant defensins are a promising tool for the control of both plant and human pathogenic agents. Plant defensins are cationic peptides of about 50 amino acid residues, rich in cysteine and whose tridimensional structure is considerably conserved among different plant species. These antimicrobial molecules represent an important innate component from plant defense response against pathogens and are expressed in various plant tissues, such as leaves, tubers, flowers, pods and seeds. The present work aimed at the evaluation of the antimicrobial activity of two plant defensins against different phytopathogenic fungi and pathogenic bacteria to humans. The defensin Drr230a, whose gene was isolated from pea (Pisum sativum), and the defensin CD1,whose gene was identified within coffee (Coffea arabica) transcriptome, were subcloned in yeast expression vector and expressed in Pichia pastoris. The gene cd1 was subcloned as two different recombinant forms: CD1tC, containing a six-histidine sequence (6xHis) at the peptide C-terminal region and CD1tN, containing 6xHis coding sequence at the N-terminal region. In the case of the defensin Drr230a, the 6xHis coding sequence was inserted only at the N-terminal region. Assays of the antimicrobial activity of the purified recombinant proteins rDrr230a and rCD1 against Phakopsora pachyrhizi, causal agent of soybean Asian rust, were performed to analyze the in vitro spore germination inhibition and disease severity caused by the fungus in planta. Both recombinant defensins were able to inhibit P. pachyrhizi uredospore germination, with no difference between the antimicrobial action of either CD1tC or CD1tN. Moreover, rDrr230a and rCD1 drastically reduced severity of soybean Asian rust, as demonstrated by in planta assays. In spite of the fact that rCD1 was not able to inhibit proliferation of the human pathogenic bacteria Staplylococcus aureus and Klebsiella pneumoniae, rCD1 was able to inhibit growth of the phytopathogenic fungus Fusarium tucumaniae, that causes soybean sudden death syndrome. The obtained results show that these plant defensins are useful candidates to be used in plant genetic engineering programs to control agriculture impacting fungal diseases.
Resumo:
Introduction: The production of KPC (Klebsiella pneumoniae carbapenemase) has become an important mechanism of carbapenem-resistance among Enterobacteriaceae strains. In Brazil, KPC is already widespread and its incidence has increased significantly, reducing treatment options. The “perfect storm” combination of the absence of new drug developmentand the emergence of multidrug-resistant strains resulted in the need for the use of older drugs, with greater toxicity, such as polymyxins. Aims: To determine the occurrence of carbapenemase-producing strains in carbapenem-resistant Enterobacteriaceae isolated from patients with nosocomial infection/colonization during September/2014 to August/2015, to determine the risk factors associated with 30-day- mortality and the impact of inappropriate therapy. Materials and Methods: We performed a case control study to assess the risk factors (comorbidities, invasive procedures and inappropriate antimicrobial therapy) associated with 30-day-mortality, considering the first episode of infection in 111 patients. The resistance genes blaKPC, blaIMP, blaVIM and blaNDM-1 were detected by polymerase chain reaction technique. Molecular typing of the strains involved in the outbreak was performed by pulsed field gel electrophoresis technique. The polymyxin resistance was confirmed by the microdilution broth method. Results: 188 episodes of carbapenem-resistant Enterobacteriaceae infections/colonizations were detected; of these, 122 strains were recovered from the hospital laboratory. The presence of blaKPC gene were confirmed in the majority (74.59%) of these isolates. It was not found the presence of blaIMP , blaVIM and blaNDM-1 genes. K. pneumoniae was the most frequent microorganism (77,13%), primarily responsible for urinary tract infections (21,38%) and infections from patients of the Intensive Care Unit (ICU) (61,38%). Multivariate statistical analysis showed as predictors independently associated with mortality: dialysis and bloodstream infection. The Kaplan-Meier curve showed a lower probability of survival in the group of patients receiving antibiotic therapy inappropriately. Antimicrobial use in adult ICU varied during the study period, but positive correlation between increased incidence of strains and the consumption was not observed. In May and July 2015, the occurrence rates of carbapenem-resistant Enterobacteriaceae KPC-producing per 1000 patient-days were higher than the control limit established, confirming two outbreaks, the first caused by colistin-susceptible KPC-producing K. pneumoniae isolates, with a polyclonal profile and the second by a dominant clone of colistin-resistant (≥ 32 μg/mL) KPC-producing K. pneumoniae. The cross transmission between patients became clear by the temporal and spatial relationships observed in the second outbreak, since some patients occupied the same bed, showing problems in hand hygiene adherence among healthcare workers and inadequate terminal disinfection of environment. The outbreak was contained when the ICU was closed to new admissions. Conclusions: The study showed an endemicity of K. pneumoniae KPC-producing in adult ICU, progressing to an epidemic monoclonal expansion, resulted by a very high antibiotic consumption of carbapenems and polymyxins and facilitated by failures in control measures the unit.