913 resultados para COROT-EXO-4B
Resumo:
Pivaloyl-D-prolyl-L-prolyl-L-analyl-N-methylam~de (I), C1UH32N40c4r,y stallizes in the orthorhombic space group P21212,w ith four molecules in a unit cell of dimensions a = 9.982 (l),b = 10.183 (3), c = 20.746 (2)A . The structure has been refined to R 0.048 for 1 745 observed reflections. All the peptide bonds in the molecule are trans and both the prolyl residues are in the CY-exo-conformation. The molecule assumes a highly folded conformation in which a Type II' DL bend is followed by a Type I LL bend, both stabilised by intramolecular 4 + 1 hydrogen bonds. This conformation, which has been observed for the first time, is of interest in relation to the structure of gramicidin S.
Resumo:
C18H2204, orthorhombic, P212~21, a = 7.343 (4), b = 11.251 (4), c = 19.357 (4)A, Z = 4, Dr, ' = 1.20, D e = 1.254 g cm -3, F(000) = 648, p(Mo Ka) = 0.94 cm -~. X-ray intensity data were collected on a Nonius CAD-4 diffractometer and the structure was solved by direct methods. Full-matrix least-squares refinement gave R = 0.052 (R w = 0.045) for 1053 observed reflections. The stereochemical configuration at C(2) has been shown to be 2-exo-methyl-2-endo- (2,6-dimethoxyphenyl), i.e. (3) in contrast to the structure (2) assigned earlier based on its ~H NMR data.
Resumo:
The 1H and 13C chemical shifts, characteristic vibrational frequencies and force constants for some substituted azolidines are correlated with the results of the CNDO/2 calculations. The influence of the exo and endo heteroatoms on the electronic structure of the heterocyclic ring are discussed.
Resumo:
CI1H19N4OIIP2.Na+.TH2 O, Mr = 594.08, is orthorhombic, space group P21212 l, with a = 6.946 (2), b = 12.503 (4), c = 28.264 (8)/k, U = 2454.6 A, a, D x = 1.61 Mg m -a, Z = 4, ~t(CuKa) = 2.612 mm -1, F(000) = 1244. Final R = 0.101 for 1454 observed reflections. The cytosine base is in the anti conformation with respect to the sugar (ZCN = 62"60) . The ribose exhibits an uncommon C(l')exo-C(2')endo puckering. The pyrophosphate has a characteristic staggered geometry. The conformation about P(2)-O(7') is trans (-103.4°). This makes CDPethanolamine more extended compared to the folded geometry of CDP-choline, which has a gauche conformation (71.3 o). The molecular interactions in the extended crystal structure, however, are similar to those found in CDP-choline, with the CMP-5' portions tightly bound by metal ligation and the phosphorylethanolamine parts only loosely held by water molecules.
Resumo:
Single pulse shock tube facility has been developed in the High Temperature Chemical Kinetics Lab, Aerospace Engineering Department, to carry out ignition delay studies and spectroscopic investigations of hydrocarbon fuels. Our main emphasis is on measuring ignition delay through pressure rise and by monitoring CH emission for various jet fuels and finding suitable additives for reducing the delay. Initially the shock tube was tested and calibrated by measuring the ignition delay of C2H6-O2 mixture. The results are in good agreement with earlier published works. Ignition times of exo-tetrahdyrodicyclopentadiene (C10H16), which is a leading candidate fuel for scramjet propulsion has been studied in the reflected shock region in the temperature range 1250 - 1750 K with and without adding Triethylamine (TEA). Addition of TEA results in substantial reduction of ignition delay of C10H16.
Resumo:
Serine hydroxymethyltransferase, the first enzyme in the pathway for interconversion of C1 fragments, was purified to homogeneity for the first time from any plant source. The enzyme from 72-h mung bean (Vigna radiata L.) seedlings was isolated using Blue Sepharose CL-6B and folate-AH-Sepharose-4B affinity matrices and had the highest specific activity (1.33 micromoles of HCHO formed per minute per milligram protein) reported hitherto. The enzyme preparation was extremely stable in the presence of folate or L-serine. Pyridoxal 5'-phosphate, ethylenediaminetetraacetate and 2-mercaptoethanol prevented the inactivation of the enzyme during purification. The enzyme functioned optimally at pH 8.5 and had two temperature maxima at 35 and 55°C. The Km values for serine were 1.25 and 68 millimolar, corresponding to Vmax values of 1.8 and 5.4 micromoles of HCHO formed per minute per milligram protein, respectively. The K0.5 value for L-tetrahydrofolate (H4folate) was 0.98 millimolar. Glycine, the product of the reaction and D-cycloserine, a structural analog of D-alanine, were linear competitive inhibitors with respect to L-serine with Ki values of 2.30 and 2.02 millimolar, respectively. Dichloromethotrexate, a substrate analog of H4folate was a competitive inhibitor when H4folate was the varied substrate. Results presented in this paper suggested that pyridoxal 5'-phosphate may not be essential for catalysis.The sigmoid saturation pattern of H4folate (nH = 2.0), one of the substrates, the abolition of sigmoidicity by NADH, an allosteric positive effector (nH = 1.0) and the increase in sigmoidicity by NAD+ and adenine nucleotides, negative allosteric effectors (nH = 2.4) clearly established that this key enzyme in the folate metabolism was an allosteric protein. Further support for this conclusion were the observations that (a) serine saturation exhibited an intermediary plateau region; (b) partial inhibition by methotrexate, aminopterin, O-phosphoserine, DL-{alpha}-methylserine and DL-O-methylserine; (c) subunit nature of the enzyme; and (d) decrease in the nH value from 2.0 for H4folate to 1.5 in presence of L-serine. These results highlight the regulatory nature of mung bean serine hydroxymethyltransferase and its possible involvement in the modulation of the interconversion of folate coenzymes.
Resumo:
Ab initio RHF/4-31G level molecular orbital calculations have been carried out on dimethoxymethane as a model compound for the acetal moiety in methyl pyranosides. The calculations are consistent with the predictions of the anomeric effect and the exo-anomeric effect. They reproduce very successfully the differences in molecular geometry observed by x-ray and neutron diffraction of single crystals of the methyl cy-D- and methyl 0-D-pyranosides. Calculations carried out at the 6-3 1G* level for methanediol confirm the earlier calculations at the 4-31G level, with smaller energy differences between the four staggered conformations.
Resumo:
Retinol-binding protein and its complex with prealbumin were isolated from goat serum by chromatography on DEAE-Sephadex A-50, gel filtration and immuno-affinity chromatography on antigoat-serum albumin-Sepharose 4B. The homogeneous prealbumin-retinol-binding protein complex had a molecular weight of 75 000. Both on electrophoresis and in the presence of 2 M urea, the complex dissociated into retinol-binding protein and prealbumin. The molecular weight, electrophoretic behaviour, ultraviolet and fluorescence spectra of goat retinol-binding protein were similar to those isolated from other sources. On sodium dodecyl sulphate gel electrophoresis, goat prealbumin (molecular weight ≈ 55 000) exhibited two bands corresponding to molecular weights 26 000 and 13 000. This suggests that either goat prealbumin consists of two non-identical sub-units or perhaps complete dissociation might not have occurred. Goat prealbumin was able to bind Image -thyroxine and retinol-binding protein.
Resumo:
Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.
Resumo:
Disodium deoxyuridine 5'-nhosDhate pentahvdrate, Na2(C9H l INEOsP). 5 H20, Call 11N208 P2-. 2Na +. 5 H20, crystallizes in the monoclinic space group P2: with a = 7.250 (4), b = 35.45 (2), c = 7.132 (4)/~, fl = 102.2 (4) °, Z = 4. The Cu Ka intensity data were collected photographically and estimated visually. The structure was obtained by the minimum-function method and difference syntheses and refined to an R of 0.089. In both molecules the uracil base has an anti conformation (2cN = 57.1 and 59.9 °) with respect to the sugar. The deoxyribose moiety of molecule B shows a typical C(l')-exo puckering, with C(I') displaced by 0.52 /k from the best plane. The furanose ring conformation of molecule A can be described as C(2')-endo,C(l')-exo. Both the molecules have an unusual trans-gauche conformation about the exocyclic C(4')-C(5') bond with (~0oo = 171.1, 172.2°; ~0oc = -64.7, -65.9°).
Resumo:
The crystal structure of 5'-amino-5'-deoxyadenosine (5'-Am.dA) p-toluenesulfonate has been determined by X-ray crystallographic methods. It belongs to the orthorhombic space group P2(1)2(1)2(1) with a = 7.754(3)Angstrom, b = 8.065(1)Angstrom and c = 32.481(2)Angstrom. This nucleoside side shows a syn conformation about the glycosyl bond and C2'-endo-C3'-exo puckering for the ribose sugar. The orientation of N5' atom is gauche-trans about the exocyclic C4'-C5' bond. The amino nitrogen N5' forms a trifurcated hydrogen bond with N3, O9T and O4' atoms. Adenine bases form A.A.A triplets through hydrogen bonding between N6, N7 and N1 atoms of symmetry related nucleoside molecules.
Resumo:
The crystal and molecular structure of N-benzyloxycarbonyl-a-aminoisobutyryl-L-prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212-21. Cell dimensions are a = 7.705 A, b = 11.365 A, and c = 21.904 A. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 - 1 intramolecular N-H--0 hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type 111 P-turn conformation, with 42 = -51.0°, +* = -39.7",&j = -65.0', $3 = -25.4'. An unusual feature is the occurrence of the proline residue at position 3 of the P-turn. The observed structure supports the view that Aib residues initiate the formation of type 111 @-turn conformations. The pyrrolidine ring is puckered in Cy-exo fashion.
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80A degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 A mu g/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.
Resumo:
Several methods were developed for converting isodigitoxigenin (2a) into methyl acetals 4b and 4c. Of these, methanolysis (followed by acetylation) of isodigitoxigenin in the presence of p-toluenesulfonic acid proved most useful. Each isomer reached an equilibrium corresponding to ca. 3:1 acetal 4c to 4b within 15 min in benzene containing p-toluenesulfonic acid. Addition of dihydropyran to the equilibrium mixture resulted in excellent conversion into vinyl ether 5a. Heating either acetal 4b or 4c in benzene containing p-toluenesulfonic acid led to a skeletal rearrangement culminating in formation of C-norcardenolide 6. In addition to results of physical measurements, the structure of spiran 6 was confirmed by degradation to methyl ketone 8. Similar rearrangement of isodigitoxigenin gave spiran 9 accompanied by C-norcardenolide 6. Treating lactone 9 with p-toluenesulfonic acid in methanol-water provided acetals 10a and 10b, which on further contact with p-toluenesulfonic acid in refluxing benzene gave lactone 9 and cardenolide 6. Evidence underlying the stereochemical assignments noted for structures 4, 9, and 10 was also discussed.