951 resultados para CONTROL ELEMENTS
Resumo:
Though significant progress has been made through control efforts in recent years, malaria remains a leading cause of morbidity and mortality throughout the world, with 3.2 billion people at risk of developing the disease. Zanzibar is currently pursuing malaria elimination through the Zanzibar Malaria Elimination Program (ZAMEP), and is working toward a goal of no locally acquired malaria cases by 2018. A comprehensive and well functioning malaria surveillance program is central to achieving this goal. Under ZAMEP’s current surveillance strategy, District Malaria Surveillance Officers (DMSOs) respond to malaria case notifications through the reactive case detection (RACD) system. Three malaria screening and treatment strategies are undertaken in response to this system, including household-level (HSaT), focal-level (FSaT), and mass-level (MSaT). Each strategy is triggered by a different case threshold and tests different-sized populations. The aims of this study were to (1) assess the cost effectiveness of three malaria screening and treatment strategies; (2) assess the timeliness and completeness of ZAMEP’s RACD system; (3) and qualitatively explore the roles of DMSOs.
Screening disposition and budget information for 2014 screening and treatment strategies was analyzed to determine prevalence rates in screened populations and the cost effectiveness of each strategy. Prevalence rates within the screened population varied by strategy: 6.1 percent in HSaT, 1.2 percent in FSaT, and 0.9 percent in MSaT. Of the various costing scenarios considering cost per person screened, MSaT was the most cost-effective, with costs ranging from $9.57 to $12.57 per person screened. Of the various costing scenarios considering cost per case detected, HSaT was the most cost-effective, at $385.51 per case detected.
Case data from 2013 through mid-2015 was used to assess the timeliness and completeness of the RACD system. The average number of RACD activities occurring within 48 hours of notification improved slightly between 2013 and the first half of 2015, from 90.7 percent to 93.1 percent. The average percentage of household members screened during RACD also increased over the same time period, from 84 percent in 2013 to 89.9 percent in the first half of 2015.
Interviews with twenty DMSOs were conducted to gain insights into the challenges to malaria elimination both from the health system and the community perspectives. Major themes discussed in the interviews include the need for additional training, inadequate information capture at health facility, resistance to household testing, transportation difficulties, inadequate personnel during the high transmission season, and community misinformation.
Zanzibar is now considered a low transmission setting, making elimination feasible, but also posing new challenges to achieving this goal. The findings of this study provide insight into how surveillance activities can be improved to support the goal of malaria elimination in Zanzibar. Key changes include reevaluating the use of MSaT activities, improving information capture at health facilities, hiring additional DMSOs during the high transmission season, and improving community communication.
Resumo:
Tuned liquid column dampers have been proved to be successful in mitigating the dynamic responses of civil infrastructure. There have been some recent applications of this concept on wind turbines and this passive control system can help to mitigate responses of offshore floating platforms and wave devices. The control of dynamic responses of these devices is important for reducing loads on structural elements and facilitating operations and maintenance (O&M) activities. This paper outlines the use of a tuned single liquid column damper for the control of a tension leg platform supported wind turbine. Theoretical studies were carried out and a scaled model was tested in a wave basin to assess the performance of the damper. The tests on the model presented in this paper correspond to a platform with a very low natural frequency for surge, sway and yaw motions. For practical purposes, it was not possible to tune the liquid damper exactly to this frequency. The consequent approach taken and the efficiency of such approach are presented in this paper. Responses to waves of a single frequency are investigated along with responses obtained from wave spectra characterising typical sea states. The extent of control is quantified using peak and root mean squared dynamic responses respectively. The tests present some guidelines and challenges for testing scaled devices in relation to including response control mechanisms. Additionally, the results provide a basis for dictating future research on tuned liquid column damper based control on floating platforms.
Resumo:
The objective of this paper is to conceptualize Supply Chain Resilience (SCRes) and identify which supply chain capabilities can support the containment of disruptions and how these capabilities affect SCRes. Through a systematic and structured review of literature, this paper provides insights into the conceptualization and research methodological background of the SCM field. A total of one hundred and thirty four carefully selected refereed journal articles were systematically analyzed leading to the introduction of a novel definition for SCRes, which the authors view as the as “the ability to proactively plan and design the Supply Chain network for anticipating unexpected disruptive (negative) events, respond adaptively to disruptions while maintaining control over structure and function and transcending to a post-event robust state of operations, if possible, more favorable than the one prior to the event, thus gaining competitive advantage”. Finally, a critical examination of existing conceptual frameworks for understanding the relationships between the SCRes concept and its identified formative elements, is taking place.
Resumo:
Mineral and chemical composition of alluvial Upper-Pleistocene deposits from the Alto Guadalquivir Basin (SE Spain) were studied as a tool to identify sedimentary and geomorphological processes controlling its formation. Sediments located upstream, in the north-eastern sector of the basin, are rich in dolomite, illite, MgO and KB2BO. Downstream, sediments at the sequence base are enriched in calcite, smectite and CaO, whereas the upper sediments have similar features to those from upstream. Elevated rare-earth elements (REE) values can be related to low carbonate content in the sediments and the increase of silicate material produced and concentrated during soil formation processes in the neighbouring source areas. Two mineralogical and geochemical signatures related to different sediment source areas were identified. Basal levels were deposited during a predominantly erosive initial stage, and are mainly composed of calcite and smectite materials enriched in REE coming from Neogene marls and limestones. Then the deposition of the upper levels of the alluvial sequences, made of dolomite and illitic materials depleted in REE coming from the surrounding Sierra de Cazorla area took place during a less erosive later stage of the fluvial system. Such modification was responsible of the change in the mineralogical and geochemical composition of the alluvial sediments.
Resumo:
This paper reports the findings from a study of the learning of English intonation by Spanish speakers within the discourse mode of L2 oral presentation. The purpose of this experiment is, firstly, to compare four prosodic parameters before and after an L2 discourse intonation training programme and, secondly, to confirm whether subjects, after the aforementioned L2 discourse intonation training, are able to match the form of these four prosodic parameters to the discourse-pragmatic function of dominance and control. The study designed the instructions and tasks to create the oral and written corpora and Brazil’s Pronunciation for Advanced Learners of English was adapted for the pedagogical aims of the present study. The learners’ pre- and post-tasks were acoustically analysed and a pre / post- questionnaire design was applied to interpret the acoustic analysis. Results indicate most of the subjects acquired a wider choice of the four prosodic parameters partly due to the prosodically-annotated transcripts that were developed throughout the L2 discourse intonation course. Conversely, qualitative and quantitative data reveal most subjects failed to match the forms to their appropriate pragmatic functions to express dominance and control in an L2 oral presentation.
Resumo:
One of the most important theories in the study of environmental governance and policy is the pathology of command and control, which describes the negative consequences of top-down, technocratic governance of social and ecological systems. However, to date, this theory has been expressed somewhat inconsistently and informally in the literature, even by the seminal works that have established its importance and popularized it. This presents a problem for the sustainability science community if it cannot be sure of the precise details of one of its most important theories. Without such precision, applications and tests of various elements of the theory cannot be conducted reliably to advance the knowledge of environmental governance. I address this problem by synthesizing several seminal works to formalize this theory. The formalization involves the identification of the individual elements of the theory and a diagrammatic description of their relationships with each other that unfold in a series of semi-independent causal paths. Ideally, with such a formalization, scholars can use this theory more reliably and more meaningfully in their future work. I conclude by discussing the implications this theory has for the governance of natural resources.
Resumo:
Eukaryotic genomes contain repetitive DNA sequences. This includes simple repeats and more complex transposable elements (TEs). Many TEs reach high copy numbers in the host genome, owing to their amplification abilities by specific mechanisms. There is growing evidence that TEs contribute to gene transcriptional regulation. However, excess of TE activity may lead to reduced genome stability. Therefore, TEs are suppressed by the transcriptional gene silencing machinery via specific chromatin modifications. In contrary, effectiveness of the epigenetic silencing mechanisms imposes risk for TE survival in the host genome. Therefore, TEs may have evolved specific strategies for bypassing epigenetic control and allowing the emergence of new TE copies. Recent studies suggested that the epigenetic silencing can be, at least transiently, attenuated by heat stress in A. thaliana. Heat stress induced strong transcriptional activation of COPIA78 family LTR-retrotransposons named ONSEN, and even their transposition in mutants deficient in siRNA-biogenesis. ONSEN transcriptional activation was facilitated by the presence of heat responsive elements (HREs) within the long terminal repeats, which serve as a binding platform for the HEAT SHOCK FACTORs (HSFs). This thesis focused on the evolution of ONSEN heat responsiveness in Brassicaceae. By using whole-transcriptome sequencing approach, multiple Arabidopsis lyrata ONSENs with conserved heat response were found and together with ONSENs from other Brassicaceae were used to reconstruct the evolution of ONSEN HREs. This indicated ancestral situation with two, in palindrome organized, HSF binding motifs. In the genera Arabidopsis and Ballantinia, a local duplication of this locus increased number of HSF binding motifs to four, forming a high-efficiency HRE. In addition, whole transcriptome analysis revealed novel heat-responsive TE families COPIA20, COPIA37 and HATE. Notably, HATE represents so far unknown COPIA family which occurs in several Brassicaceae species but is absent in A. thaliana. Putative HREs were identified within the LTRs of COPIA20, COPIA37 and HATE of A. lyrata, and could be preliminarily validated by transcriptional analysis upon heat induction in subsequent survey of Brassicaeae species. Subsequent phylogenetic analysis indicated a repeated evolution of heat responsiveness within Brassicaceae COPIA LTR-retrotransposons. This indicates that acquisition of heat responsiveness may represent a successful strategy for survival of TEs within the host genome.
Resumo:
Miniaturization of power generators to the MEMS scale, based on the hydrogen-air fuel cell, is the object of this research. The micro fuel cell approach has been adopted for advantages of both high power and energy densities. On-board hydrogen production/storage and an efficient control scheme that facilitates integration with a fuel cell membrane electrode assembly (MEA) are key elements for micro energy conversion. Millimeter-scale reactors (ca. 10 µL) have been developed, for hydrogen production through hydrolysis of CaH2 and LiAlH4, to yield volumetric energy densities of the order of 200 Whr/L. Passive microfluidic control schemes have been implemented in order to facilitate delivery, self-regulation, and at the same time eliminate bulky auxiliaries that run on parasitic power. One technique uses surface tension to pump water in a microchannel for hydrolysis and is self-regulated, based on load, by back pressure from accumulated hydrogen acting on a gas-liquid microvalve. This control scheme improves uniformity of power delivery during long periods of lower power demand, with fast switching to mass transport regime on the order of seconds, thus providing peak power density of up to 391.85 W/L. Another method takes advantage of water recovery by backward transport through the MEA, of water vapor that is generated at the cathode half-cell reaction. This regulation-free scheme increases available reactor volume to yield energy density of 313 Whr/L, and provides peak power density of 104 W/L. Prototype devices have been tested for a range of duty periods from 2-24 hours, with multiple switching of power demand in order to establish operation across multiple regimes. Issues identified as critical to the realization of the integrated power MEMS include effects of water transport and byproduct hydrate swelling on hydrogen production in the micro reactor, and ambient relative humidity on fuel cell performance.
Resumo:
Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. This method can be applied on structures where x-ray tomography is impractical due to size, low contrast, or safety concerns. By taking many ultrasonic pulse velocity (UPV) readings through the object, an image of the internal velocity variations can be constructed. Air-coupled UPV can allow for more automated and rapid collection of data for tomography of concrete. This research aims to integrate recent developments in air-coupled ultrasonic measurements with advanced tomography technology and apply them to concrete structures. First, non-contact and semi-contact sensor systems are developed for making rapid and accurate UPV measurements through PVC and concrete test samples. A customized tomographic reconstruction program is developed to provide full control over the imaging process including full and reduced spectrum tomographs with percent error and ray density calculations. Finite element models are also used to determine optimal measurement configurations and analysis procedures for efficient data collection and processing. Non-contact UPV is then implemented to image various inclusions within 6 inch (152 mm) PVC and concrete cylinders. Although there is some difficulty in identifying high velocity inclusions, reconstruction error values were in the range of 1.1-1.7% for PVC and 3.6% for concrete. Based upon the success of those tests, further data are collected using non-contact, semi-contact, and full contact measurements to image 12 inch (305 mm) square concrete cross-sections with 1 inch (25 mm) reinforcing bars and 2 inch (51 mm) square embedded damage regions. Due to higher noise levels in collected signals, tomographs of these larger specimens show reconstruction error values in the range of 10-18%. Finally, issues related to the application of these techniques to full-scale concrete structures are discussed.
Resumo:
La demanda de una producción de alimentos cada vez mayor a nivel mundial sumado a la tecnificación y al ritmo acelerado del progreso de las explotaciones agropecuarias actuales hacen que el ganado deba soportar elevadas presiones de producción aumentando los requerimientos de nutrientes. Este es el caso de los minerales considerados actualmente elementos esenciales para los animales, aunque tradicionalmente fueron definidos como los nutrientes pobres de la nutrición y alimentación animal. Actualmente se ha demostrado con evidencia clínica y productiva, el importante rol metabólico de los minerales en el animal sano y productivo, como también se ha definido qué elemento mineral y porcentaje del mismo es requerido para el normal funcionamiento del organismo. Los macro-minerales (calcio, magnesio, fósforo, sodio, potasio, cloro y azufre) y los oligo-minerales (cobre, zinc, hierro, selenio, cobalto, iodo, manganeso, molibdeno y cromo) son elementos esenciales y necesarios para transformar la proteína y la energía de los alimentos en componentes del organismo o en productos animales como leche, carne, crías, piel, lana. Además, ayudan al organismo a combatir las enfermedades, manteniendo al animal en buen estado de salud. Se ha considerado a los minerales como el tercer grupo limitante en la nutrición animal, siendo a su vez, el que mayor potencial y menor costo tiene para incrementar la producción del ganado. Los minerales desempeñan funciones tan importantes como ser constituyentes de la estructura ósea y dental, de tejidos blandos y líquidos corporales. Están involucrados en el funcionamiento celular, siendo activadores de más de trescientas enzimas, constituyentes esenciales de vitaminas, hormonas y pigmentos respiratorios y facilitando la actividad de los microorganismos del rumen. Cuando el aporte de minerales en la ración no es el adecuado en calidad y/o cantidad se originan las deficiencias minerales, encuadradas dentro de las enfermedades metabólicas o enfermedades de la producción. Estas han sido informadas en casi todo el mundo y son responsables de importantes pérdidas económicas en los rodeos de bovinos para carne. Las deficiencias y/o desequilibrios minerales pueden causar los siguientes trastornos en los animales: bajo porcentaje de parición, mayor número de servicios por concepción, abortos, retenciones placentarias, incremento del intervalo entre partos, baja producción de leche, menor peso al nacimiento y al destete, menor porcentaje de destete, menor ganancia de peso, mayor incidencia de enfermedades infecciosas, fracturas espontáneas, diarrea, deformación de huesos y mortandad. Así cobra importancia el diagnóstico mediante el análisis de la sangre de los animales, del pasto y el agua que consumen y la caracterización de estas deficiencias en primarias o secundarias con el objetivo de poder realizar un control de las mismas mediante un adecuado plan de suplementación mineral acorde a las necesidades de los distintos establecimientos agropecuarios.
Resumo:
This paper presents a new tuning methodology of the main controller of an internal model control structure for n×n stable multivariable processes with multiple time delays based on the centralized inverted decoupling structure. Independently of the system size, very simple general expressions for the controller elements are obtained. The realizability conditions are provided and the specification of the closed-loop requirements is explained. A diagonal filter is added to the proposed control structure in order to improve the disturbance rejection without modifying the nominal set-point response. The effectiveness of the method is illustrated through different simulation examples in comparison with other works.
Resumo:
El presente trabajo de investigación lleva como título “CONTROL DE DEVOLUCIÓN DE IVA A PERSONAS DE LA TERCERA EDAD”, el cual realiza un análisis minucioso del proceso de devolución del Impuesto al Valor Agregado en la actualidad, y la manera en la que es factible mejorarlo. Lo que podemos observar en el desarrollo del presente trabajo de investigación, haciendo hincapié a como las personas de la Tercera Edad hacen uso de sus derechos, cual es el impacto que causa la devolución del IVA dentro de las Arcas Fiscales. El capítulo uno se enfoca principalmente a los aspectos generales de los Impuestos, como es: conceptos, elementos del impuesto, fines y efectos, clasificación y la trascendencia que ha tenido los impuestos desde la época colonial hasta la actualidad. El capítulo dos se orienta más a la entidad reguladora de los Impuestos en el Ecuador, el SRI, como es su misión, visión, facultades, objetivos, así como el detalle completo de la información necesaria acerca del Impuesto al Valor Agregado. En el capítulo tres encontraremos el análisis poblacional emitido por la INEC para el año 2015, dividido en sectores (Edades, Sexo, Provincia), el detalle completo del proceso de devolución de IVA para las personas de la Tercera Edad. Para concluir con el estudio, en el capítulo cuatro hacemos mención de las conclusiones y recomendaciones para el mejoramiento del proceso de devolución de IVA de las personas de la Tercera Edad.
Resumo:
Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.
Resumo:
The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.
Resumo:
El propósito de la presente investigación es el de analizar la debilidad que ha tenido el Estado colombiano con respecto a la obtención del control territorial en algunas áreas específicas del departamento del Valle del Cauca, considerando variables fundamentales como la coerción, el capital y la justicia, en su mayoría planteadas por Charles Tilly como elementos básicos de cualquier Estado. Se analizan y explican los periodos de violencia, y la consolidación de grupos al margen de la ley en Colombia y en el departamento del Valle del Cauca, evidenciando la debilidad del Estado en ciertas áreas a lo largo de los años, tomando finalmente como estudio de caso el surgimiento de la banda criminal de “los Rastrojos” posterior a la desmovilización de las AUC, como actor al margen de la ley que disputa el poder y ejerce ilegalmente funciones del Estado.