984 resultados para CHRONIC LYMPHOCYTIC LEUKEMIA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bcr-abl chimeric oncoprotein exhibits deregulated protein tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph)-positive human leukemias, such as chronic myelogenous leukemia (CML). Recently we have shown that the levels of the protein tyrosine phosphatase PTP1B are enhanced in p210 bcr-abl-expressing cell lines. Furthermore, PTP1B recognizes p210 bcr-abl as a substrate, disrupts the formation of a p210 bcr-abl/Grb2 complex, and inhibits signaling events initiated by this oncoprotein PTK. In this report, we have examined whether PTP1B effects transformation induced by p210 bcr-abl. We demonstrate that expression of either wild-type PTP1B or the substrate-trapping mutant form of the enzyme (PTP1B-D181A) in p210 bcr-abl-transformed Rat-1 fibroblasts diminished the ability of these cells to form colonies in soft agar, to grow in reduced serum, and to form tumors in nude mice. In contrast, TCPTP, the closest relative of PTP1B, did not effect p210 bcr-abl-induced transformation. Furthermore, neither PTP1B nor TCPTP inhibited transformation induced by v-Abl. In addition, overexpression of PTP1B or treatment with CGP57148, a small molecule inhibitor of p210 bcr-abl, induced erythroid differentiation of K562 cells, a CML cell line derived from a patient in blast crisis. These data suggest that PTP1B is a selective, endogenous inhibitor of p210 bcr-abl and is likely to be important in the pathogenesis of CML.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P210 Bcr-Abl is an activated tyrosine kinase oncogene encoded by the Philadelphia chromosome associated with human chronic myelogenous leukemia (CML). The disease represents a clonal disorder arising in the pluripotent hematopoietic stem cell. During the chronic phase, patients present with a dramatic expansion of myeloid cells and a mild anemia. Retroviral gene transfer and transgenic expression in rodents have demonstrated the ability of Bcr-Abl to induce various types of leukemia. However, study of human CML or rodent models has not determined the direct and immediate effects of Bcr-Abl on hematopoietic cells from those requiring secondary genetic or epigenetic changes selected during the pathogenic process. We utilized tetracycline-regulated expression of Bcr-Abl from a promoter engineered for robust expression in primitive stem cells through multilineage blood cell development in combination with the in vitro differentiation of embryonal stem cells into hematopoietic elements. Our results demonstrate that Bcr-Abl expression alone is sufficient to increase the number of multipotent and myeloid lineage committed progenitors in a dose-dependent manner while suppressing the development of committed erythroid progenitors. These effects are reversible upon extinguishing Bcr-Abl expression. These findings are consistent with Bcr-Abl being the sole genetic change needed for the establishment of the chronic phase of CML and provide a powerful system for the analysis of any genetic change that alters cell growth and lineage choices of the hematopoietic stem cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cells of most tissues require adhesion to a surface to grow. However, for hematopoietic cells, both stimulation and inhibition of proliferation by adhesion to extracellular matrix components have been described. Furthermore, it has been suggested that progenitor cells from chronic myelogenous leukemia show decreased β1 integrin-mediated adhesion to fibronectin, resulting in increased proliferation and abnormal trafficking. However, we show here that the chronic myelogenous leukemia-specific fusion protein p210bcr/abl stimulates the expression of α5β1 integrins and induces adhesion to fibronectin when expressed in the myeloid cell line 32D. Moreover, proliferation of both p210bcr/abl-transfected 32D (32Dp210) cells and untransfected 32D cells is stimulated by immobilized fibronectin. Cell cycle analysis revealed that nonadherent 32D and 32Dp210 cells are arrested in late G1 or early S phase, whereas the adherent fractions continue cycling. Although both adherent and nonadherent p210bcr/abl-transfected and parental 32D cells express equal amounts of cyclin A, a protein necessary for cell cycle progression at the G1/S boundary, cyclin A complexes immunoprecipitated from 32D cells cultured on immobilized fibronectin were found to be catalytically inactive in nonadherent but not in adherent cells. In addition, as compared with untransfected 32D cells, cyclin A immunoprecipitates from 32Dp210 cells exhibited a greatly elevated kinase activity and remained partially active irrespective of the adhesion status. The lack of cyclin A/cyclin-dependent kinase (CDK) 2 activity in nonadherent 32D cells appeared to result from increased expression and cyclin A complex formation of the CDK inhibitor p27Kip1. Taken together, our results indicate that adhesion stimulates cell cycle progression of hematopoietic cells by down-regulation of p27Kip1, resulting in activation of cyclin A/CDK2 complexes and subsequent transition through the G1/S adhesion checkpoint.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The (3;21)(q26;q22) translocation associated with treatment-related myelodysplastic syndrome, treatment-related acute myeloid leukemia, and blast crisis of chronic myeloid leukemia results in the expression of the chimeric genes AML1/EAP, AML1/MDS1, and AML1/EVI1. AML1 (CBFA2), which codes for the alpha subunit of the heterodimeric transcription factor CBF, is also involved in the t(8;21), and the gene coding for the beta subunit (CBFB) is involved in the inv(16). These are two of the most common recurring chromosomal rearrangements in acute myeloid leukemia. CBF corresponds to the murine Pebp2 factor, and CBF binding sites are found in a number of eukaryotic and viral enhancers and promoters. We studied the effects of AML1/EAP and AML1/MDS1 at the AML1 binding site of the CSF1R (macrophage-colony-stimulating factor receptor gene) promoter by using reporter gene assays, and we analyzed the consequences of the expression of both chimeric proteins in an embryonic rat fibroblast cell line (Rat1A) in culture and after injection into athymic nude mice. Unlike AML1, which is an activator of the CSF1R promoter, the chimeric proteins did not transactivate the CSF1R promoter site but acted as inhibitors of AML1 (CBFA2). AML1/EAP and AML1/MDS1 expressed in adherent Rat1A cells decreased contact inhibition of growth, and expression of AML1/MDS1 was associated with acquisition of the ability to grow in suspension culture. Expression of AML1/MDS1 increased the tumorigenicity of Rat1A cells injected into athymic nude mice, whereas AML1/EAP expression prevented tumor growth. These results suggest that expression of AML1/EAP and AML1/MDS1 can interfere with normal AML1 function, and that AML1/MDS1 has tumor-promoting properties in an embryonic rat fibroblast cell line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic myelogenous leukemia evolves in two clinically distinct stages: a chronic and a blast crisis phase. The molecular changes associated with chronic phase to blast crisis transition are largely unknown. We have identified a cDNA clone, DR-nm23, differentially expressed in a blast-crisis cDNA library, which has approximately 70% sequence similarity to the putative metastatic suppressor genes, nm23-H1 and nm23-H2. The deduced amino acid sequence similarity to the proteins encoded by these two latter genes is approximately 65% and includes domains and amino acid residues (the leucine zipper-like and the RGD domain, a serine and a histidine residue in the NH2- and in the COOH-terminal portion of the protein, respectively) postulated to be important for nm23 function. DR-nm23 mRNA is preferentially expressed at early stages of myeloid differentiation of highly purified CD34+ cells. Its constitutive expression in the myeloid precursor 32Dc13 cell line, which is growth-factor dependent for both proliferation and differentiation, results in inhibition of granulocytic differentiation induced by granulocyte colony-stimulating factor and causes apoptotic cell death. These results are consistent with a role for DR-nm23 in normal hematopoiesis and raise the possibility that its overexpression contributes to differentiation arrest, a feature of blastic transformation in chronic myelogenous leukemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BCR-ABL is a chimeric oncogene generated by translocation of sequences from the c-abl protein-tyrosine kinase gene on chromosome 9 into the BCR gene on chromosome 22. Alternative chimeric proteins, p210BCR-ABL and p190BCR-ABL, are produced that are characteristic of chronic myelogenous leukemia and acute lymphoblastic leukemia, respectively. Their role in the etiology of human leukemia remains to be defined. Transformed murine hematopoietic cells can be used as a model of BCR-ABL function since these cells can be made growth factor independent and tumorigenic by the action of the BCR-ABL oncogene. We show that the BCR-ABL oncogenes prevent apoptotic death in these cells by inducing a Bcl-2 expression pathway. Furthermore, BCR-ABL-expressing cells revert to factor dependence and nontumorigenicity after Bcl-2 expression is suppressed. These results help to explain the ability of BCR-ABL oncogenes to synergize with c-myc in cell transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The manipulation of dendritic cells (DCs) ex vivo to present tumor-associated antigens for the activation and expansion of tumor-specific cytotoxic T lymphocytes (CTLs) attempts to exploit these cells’ pivotal role in immunity. However, significant improvements are needed if this approach is to have wider clinical application. We optimized a gene delivery protocol via electroporation for cord blood (CB) CD34+ DCs using in vitro–transcribed (IVT) mRNA. We achieved > 90% transfection of DCs with IVT-enhanced green fluorescent protein mRNA with > 90% viability. Electroporation of IVT-mRNA up-regulated DC costimulatory molecules. DC processing and presentation of mRNA-encoded proteins, as major histocompatibility complex/peptide complexes, was established by CTL assays using transfected DCs as targets. Along with this, we also generated specific antileukemic CTLs using DCs electroporated with total RNA from the Nalm-6 leukemic cell line and an acute lymphocytic leukemia xenograft. This significant improvement in DC transfection represents an important step forward in the development of immunotherapy protocols for the treatment of malignancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis encompasses the two researches projects I conducted during my PhD program in Molecular Biology and Pathology. The common thread is represented by the analysis of the signaling pathways implicated in the pathophysiology of the two most aggressive Philadelphia-negative myeloproliferative neoplasms, namely, atypical chronic myeloid leukemia (aCML) and primary myelofibrosis (PMF). In the last decade, since the description of the JAK2V617F mutation in 2005, the field of the molecular characterization of Philadelphia-negative myeloproliferative neoplasms has experienced an astonishing implementation that led to the discovery of 16 new mutations involving signal transduction, epigenetic modifiers, cell cycle regulators. Nevertheless, their pathogenetic relevance and whether they could represent good “druggable” candidates have to be proved yet. In the first section I provide the first report of the signaling cascade down-stream the rare cytogenetic lesion t(8;9)(p22;p24)/PCM1-JAK2 associated with aCML, finding that it selectively activates the ERK1/2 signaling without affecting JAK/STAT phosphorylation. In the second part, I investigated the implication of the ε isoform of novel Protein kinase Cs (PKCs) in the pathophysiology of the aberrant megakaryocytopoiesis in PMF, concluding that the over-expression of PKCε detains a crucial relevance in the aberrant behavior of PMF megakaryocytes and its inhibition is capable to restore their normal differentiation and abrogate the anti-apoptotic signaling. Both results are discussed in the view of their therapeutic implications. In case PCM1/JAK2-related hematologic neoplasms, ERK-inhibitors rather than JAK-inhibitors (i.e. ruxolitinib) should be considered as a “tailored” drugs. In case of PMF, PKCε-inhibitors (i.e. εV1-2 peptide) configure as an appealing strategy to re-direct the megakaryocytic neoplastic clone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When HL60 cells were induced to differentiate to granulocyte-like cells with the agents N-methylformamide and tunicamycin an concentrations marginally below those which were cytotoxic, there was a decrease in the synthesis of the glucose- regulated proteins which preceded the expression of markers of a differentiated phenotype. There was a transient increase in the amount of hsp70 after 36 hours in NMF treated cells but in differentiated cells negligible amounts were detected. Inducers which were known to modulate hsp70 such as azetadine carboxylic acid did not induce differentiation suggesting early changes in the endoplasmic reticulum may be involved in the commitment to terminal differentiation of HL60 cells. These changes in group synthesis were not observed when K562 human chronic myelogenous leukemia cells were induced to differentiate to erythroid-like cells but there was a comparable increase in amounts of hsp70. When cells were treated with concentrations of drugs which brought about a loss in cell viability there was an early increase in the amount of hsp70 protein in the absence of any increase in synthesis. HL60 cells were treated with NMF (225mM), Adriamycin (1μM), or CB3717 (5μM) and there was an increase in the amounts of hsp70, in the absence of any new synthesis, which preceded any loss of membrane integrity and any significant changes in cell cycle but was concomitant with a later loss in viability of > 50% and a loss in proliferative potential. The amounts of hsp70 in the cell after treatment with any of the drugs was comparable to that obtained after a heat shock. Following a heat shock hsp70 was translocated from the cytoplasm to the nucleus, but treatment with toxic concentrations of drug caused hsp70 to remain localised in the cytoplasm. Changes in hsp70 turn-over was observed after a heat shock compared to NMF-treated cells. Morphological studies suggested that cells that had been treated with NMF and CB3717 were undergoing necrosis whereas the Adriamycin cells showed characteristics that were indicative of apoptosis. The data supports the hypothesis that an increase in amounts of hsp70 is an early marker of cell death.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gold nanoparticles functionalized with thiolated oligonucleotides (Au-nanoprobes) have been used in a range of applications for the detection of bioanalytes of interest, from ions to proteins and DNA targets. These detection strategies are based on the unique optical properties of gold nanoparticles, in particular, the intense color that is subject to modulation by modification of the medium dieletric. Au-nanoprobes have been applied for the detection and characterization of specific DNA sequences of interest, namely pathogens and disease biomarkers. Nevertheless, despite its relevance, only a few reports exist on the detection of RNA targets. Among these strategies, the colorimetric detection of DNA has been proven to work for several different targets in controlled samples but demonstration in real clinical bioanalysis has been elusive. Here, we used a colorimetric method based on Au-nanoprobes for the direct detection of the e14a2 BCR-ABL fusion transcript in myeloid leukemia patient samples without the need for retro-transcription. Au-nanoprobes directly assessed total RNA from 38 clinical samples, and results were validated against reverse transcription-nested polymerase chain reaction (RT-nested PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The colorimetric Au-nanoprobe assay is a simple yet reliable strategy to scrutinize myeloid leukemia patients at diagnosis and evaluate progression, with obvious advantages in terms of time and cost, particularly in low- to medium-income countries where molecular screening is not routinely feasible. Graphical abstract Gold nanoprobe for colorimetric detection of BCR-ABL1 fusion transcripts originating from the Philadelphia chromosome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colorectal cancer (CRC) represents the third most common cancer type and the second leading cause of cancer-related death in the western world. CRC results from the accumulation of both acquired genetic and epigenetic changes that transform normal glandular epithelium into adenocarcinoma (Lao and Grady 2011), affecting several genes such as Apc, K-ras, dcc/Smad4 and p53 or DNA mismatch repair genes (Pancione et al. 2012). p38 MAPKs are a subfamily of Serine-Threonine kinases activated by different stimuli that control fundamental cellular processes such as cell growth, proliferation, differentiation, migration and apoptosis (Dhillon et al. 2007, Nebreda and Porras 2000, Wagner and Nebreda 2009). There are four p38 MAPKs isoforms in mammals: α, β, δ and γ. p38α MAPK is ubiquitously expressed and is the most abundant isoform (Cuenda and Rousseau 2007). p38α is involved in the regulation of many cellular functions, among them, cell migration and invasion. In cancer, it can act as either a promoter or a suppressor of tumor growth, playing different roles during tumor progression (del Barco Barrantes and Nebreda 2012). C3G is a guanine nucleotide exchange factor (GEF) mainly for the Ras family members: Rap1 (Gotoh et al. 1995) and R-Ras (Gotoh et al. 1997), but it can also act through GEF independent mechanisms. C3G regulates several cellular functions such as cell death, adhesion, migration and invasion (Radha et al. 2011). In collaboration with Dr. Carmen Guerrero’s group (Centro del Investigación del Cáncer de Salamanca), our group has found a new functional relationship between C3G and p38α MAPK involved in the regulation of cell death in MEFs (Gutierrez-Uzquiza et al. 2010) and in the chronic myeloid leukemia (CML) K562 cell line (Maia et al. 2009). Moreover, C3G and p38α act through a common regulatory pathway to control cell adhesion in K562 cells regulating focal adhesion proteins (Maia et al. 2013)...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pour chacun des cinq cancers, nous avons fait un rappel de l’épidémiologie en Amérique du Nord, des classifications et des facteurs pronostics, la description des études, l’étude commentée de la mortalité, et enfin la conclusion. L’étude du mélanome cutané a montré que les mélanomes sont assurables dès les premières années aux stades IA, IB, IIA et IIIA, aux stades IIB, IIC et IIIB après cinq ans et au stade IIIC après 15ans. L’étude du cancer broncho-pulmonaire a montré que le cancer à petites cellules n’est pas assurable et que les cancers broncho-pulmonaires non à petites cellules pourraient être assurables chez les moins de 65 ans aux stades IA à IIIA après dix ans, et chez les 65 ans et plus au stade IA dès les premières années, aux stades IB et IIA après cinq ans et aux stades IIB et IIIA après dix ans L’étude de la leucémie myéloïde chronique a montré l’assurabilité seulement des sujets de plus de 65 ans dès les premières années et des sujets de 60 à 65 ans après 5 ans. L’étude du lymphome de Hodgkin a montré que chez les sujets de moins de 45 ans le stade IA est assurable dès les premières années, les stades IB et IIA le sont après 5 ans et les stades IIB à IVA le sont après 10 ans. Les sujets de 45 à 64 ans aux stades IA et IIA sont assurables dès les premières années et autres stades après 5 ans. Les sujets de 65 ans et plus sont assurables dès les premières années aux stades IA à IIIA et après 5 ans aux autres stades. L’étude du cancer de l’endomètre montre qu’il n’est assurable les cinq premières années que pour le type I au stade I chez les femmes âgées de 45 ans et plus, au stade II chez les femmes de 55 ans et plus et au stade III chez les femmes de 65 ans et plus ; pour le type II au stade I chez les 65 ans et plus, et au stade II chez les 75 ans et plus ; et pour les tumeurs mullériennes malignes mixtes au stade I chez les 65 ans et plus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pour chacun des cinq cancers, nous avons fait un rappel de l’épidémiologie en Amérique du Nord, des classifications et des facteurs pronostics, la description des études, l’étude commentée de la mortalité, et enfin la conclusion. L’étude du mélanome cutané a montré que les mélanomes sont assurables dès les premières années aux stades IA, IB, IIA et IIIA, aux stades IIB, IIC et IIIB après cinq ans et au stade IIIC après 15ans. L’étude du cancer broncho-pulmonaire a montré que le cancer à petites cellules n’est pas assurable et que les cancers broncho-pulmonaires non à petites cellules pourraient être assurables chez les moins de 65 ans aux stades IA à IIIA après dix ans, et chez les 65 ans et plus au stade IA dès les premières années, aux stades IB et IIA après cinq ans et aux stades IIB et IIIA après dix ans L’étude de la leucémie myéloïde chronique a montré l’assurabilité seulement des sujets de plus de 65 ans dès les premières années et des sujets de 60 à 65 ans après 5 ans. L’étude du lymphome de Hodgkin a montré que chez les sujets de moins de 45 ans le stade IA est assurable dès les premières années, les stades IB et IIA le sont après 5 ans et les stades IIB à IVA le sont après 10 ans. Les sujets de 45 à 64 ans aux stades IA et IIA sont assurables dès les premières années et autres stades après 5 ans. Les sujets de 65 ans et plus sont assurables dès les premières années aux stades IA à IIIA et après 5 ans aux autres stades. L’étude du cancer de l’endomètre montre qu’il n’est assurable les cinq premières années que pour le type I au stade I chez les femmes âgées de 45 ans et plus, au stade II chez les femmes de 55 ans et plus et au stade III chez les femmes de 65 ans et plus ; pour le type II au stade I chez les 65 ans et plus, et au stade II chez les 75 ans et plus ; et pour les tumeurs mullériennes malignes mixtes au stade I chez les 65 ans et plus.