973 resultados para CHEMICAL-SHIFT PREDICTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spouted beds have been used in industry for operations such as drying, catalytic reactions, and granulation. Conventional cylindrical spouted beds suffer from the disadvantage of scaleup. Two-dimensional beds have been proposed by other authors as a solution for this problem. Minimum spouting velocity has been studied for such two-dimensional beds. A force balance model has been developed to predict the minimum spouting velocity and the maximum pressure drop. Effect of porosity on minimum spouting velocity and maximum pressure drop has been studied using the model. The predictions are in good agreement with the experiments as well as with the experimental results of other investigators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes how modern machine learning techniques can be used in conjunction with statistical methods to forecast short term movements in exchange rates, producing models suitable for use in trading. It compares the results achieved by two different techniques, and shows how they can be used in a complementary fashion. The paper draws on experience of both inter- and intra-day forecasting taken from earlier studies conducted by Logica and Chemical Bank Quantitative Research and Trading (QRT) group's experience in developing trading models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The aggregation rate constant was derived from probability analysis of particle–droplet contact combined with time scale analysis of droplet solidification and granule–granule collision rates. The latter was obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate constants were validated by comparison with reported experimental data for a range of binder spray rate, binder droplet size and operating granulator temperature. The developed model is particularly useful for predicting particle size distributions and growth using population balance equations (PBEs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate identification of T-cell epitopes remains a principal goal of bioinformatics within immunology. As the immunogenicity of peptide epitopes is dependent on their binding to major histocompatibility complex (MHC) molecules, the prediction of binding affinity is a prerequisite to the reliable prediction of epitopes. The iterative self-consistent (ISC) partial-least-squares (PLS)-based additive method is a recently developed bioinformatic approach for predicting class II peptide−MHC binding affinity. The ISC−PLS method overcomes many of the conceptual difficulties inherent in the prediction of class II peptide−MHC affinity, such as the binding of a mixed population of peptide lengths due to the open-ended class II binding site. The method has applications in both the accurate prediction of class II epitopes and the manipulation of affinity for heteroclitic and competitor peptides. The method is applied here to six class II mouse alleles (I-Ab, I-Ad, I-Ak, I-As, I-Ed, and I-Ek) and included peptides up to 25 amino acids in length. A series of regression equations highlighting the quantitative contributions of individual amino acids at each peptide position was established. The initial model for each allele exhibited only moderate predictivity. Once the set of selected peptide subsequences had converged, the final models exhibited a satisfactory predictive power. Convergence was reached between the 4th and 17th iterations, and the leave-one-out cross-validation statistical terms - q2, SEP, and NC - ranged between 0.732 and 0.925, 0.418 and 0.816, and 1 and 6, respectively. The non-cross-validated statistical terms r2 and SEE ranged between 0.98 and 0.995 and 0.089 and 0.180, respectively. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made freely available online (http://www.jenner.ac.uk/MHCPred).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The underlying assumption in quantitative structure–activity relationship (QSAR) methodology is that related chemical structures exhibit related biological activities. We review here two QSAR methods in terms of their applicability for human MHC supermotif definition. Supermotifs are motifs that characterise binding to more than one allele. Supermotif definition is the initial in silico step of epitope-based vaccine design. The first QSAR method we review here—the additive method—is based on the assumption that the binding affinity of a peptide depends on contributions from both amino acids and the interactions between them. The second method is a 3D-QSAR method: comparative molecular similarity indices analysis (CoMSIA). Both methods were applied to 771 peptides binding to 9 HLA alleles. Five of the alleles (A*0201, A* 0202, A*0203, A*0206 and A*6802) belong to the HLA-A2 superfamily and the other four (A*0301, A*1101, A*3101 and A*6801) to the HLA-A3 superfamily. For each superfamily, supermotifs defined by the two QSAR methods agree closely and are supported by many experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method (algorithm BIDIMS) of multivariate objects display to bidimensional structure in which the sum of differences of objects properties and their nearest neighbors is minimal is being described. The basic regularities on the set of objects at this ordering become evident. Besides, such structures (tables) have high inductive opportunities: many latent properties of objects may be predicted on their coordinates in this table. Opportunities of a method are illustrated on an example of bidimentional ordering of chemical elements. The table received in result practically coincides with the periodic Mendeleev table.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences.Results: A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z1, z2 and z3) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop. AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity.Conclusions: AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin. © 2013 Dimitrov et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kara Sea is an area uniquely suitable for studying processes in the river-sea system. This is a shallow sea, into which two great Siberian rivers, Yenisei and Ob, flow. From 1995 to 2003, the sea was studied by six international expeditions onboard the R/V Akademik Boris Petrov. This publication summarizes the results obtained, within the framework of this project, at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Various hydrogeochemical parameters, concentrations and isotopic composition of organic and carbonate carbon of the sediments, plankton, particulate organic matter, hydrocarbons, and dissolved CO2 were examined throughout the whole sea area at more than 200 sites. The d13C varies from -22 and -24 per mil where Atlantic waters enter the Kara Sea and in the north-eastern part of the water area to -27 per mil in the Yenisei and Ob estuaries. The value of d13C of the plankton is only weakly correlated with the d13C of the organic matter from the sediments and is lower by as much as 3-4 per mil. The paper presents the results obtained from a number of meridional river-sea profiles. It was determined from the relations between the isotopic compositions of plankton and particulate matter that the river waters carry material consisting of 70% detrital-humus matter and 30% planktonogenic material in the river part, and the material contained in the offshore waters consists of 30% terrigenous components, with the contribution of bioproducers amounting to 70%. The carbon isotopic composition of the plankton ranges from -29 to -35 per mil in the riverine part, from -28 to -27 per mil in the estuaries, and from -27.0 to -25 per mil in the marine part. The relative lightness of the carbon isotopic composition of plankton in Arctic waters is explained by the temperature effect, elevated CO2 concentrations, and long-distance CO2 supply to the sea with river waters. The data obtained on the isotopic composition of CO2 in the surface waters of the Kara Sea were used to map the distribution of d13C. The complex of hydrocarbon gases extracted from the waters included methane, C2-C5, and unsaturated C2=-C4= hydrocarbons, for which variations in the concentrations in the waters were studied along river-estuary-sea profiles. The geochemistry of hydrocarbon gases in surface fresh waters is characterized by comparable concentrations of methane (0.3-5 µl/l) and heavier hydrocarbons, including unsaturated ones. Microbiological methane with d13C from -105 to -90 per mil first occurs in the sediments at depths of 40-200 cm. The sediments practically everywhere display traces of methane oxidation in the form of a shift of the d13C of methane toward higher values and the occurrence of autogenic carbonate material, including ikaite, enriched in the light isotope. Ikaite (d13C from -25 to -60 per mil) was found and examined in several profiles. The redox conditions in the sediments varied from normal in the southern part of the sea to highly oxidized along the Novaya Zemlya Trough. Vertical sections through the sediments of the latter exemplify the complete suppression of the biochemical activity of microorganisms. Our data provide insight into the biogeochemistry of the Kara Sea and make it possible to specify the background values needed for ecological control during the future exploration operations and extraction of hydrocarbons in the Kara Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Honey is a high value food commodity with recognized nutraceutical properties. A primary driver of the value of honey is its floral origin. The feasibility of applying multivariate data analysis to various chemical parameters for the discrimination of honeys was explored. This approach was applied to four authentic honeys with different floral origins (rata, kamahi, clover and manuka) obtained from producers in New Zealand. Results from elemental profiling, stable isotope analysis, metabolomics (UPLC-QToF MS), and NIR, FT-IR, and Raman spectroscopic fingerprinting were analyzed. Orthogonal partial least square discriminant analysis (OPLS-DA) was used to determine which technique or combination of techniques provided the best classification and prediction abilities. Good prediction values were achieved using metabolite data (for all four honeys, Q2 = 0.52; for manuka and clover, Q2 = 0.76) and the trace element/isotopic data (for manuka and clover, Q2 = 0.65), while the other chemical parameters showed promise when combined (for manuka and clover, Q2 = 0.43).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.

We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.

References

[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.

[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.

[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.